Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Mem. Inst. Oswaldo Cruz ; 106(7): 864-877, Nov. 2011. ilus
Artigo em Inglês | LILACS | ID: lil-606651

RESUMO

Schistosoma mansoni is one of the three main causative agents of human schistosomiasis, a major health problem with a vast socio-economic impact. Recent advances in the proteomic analysis of schistosomes have revealed that peptidases are the main virulence factors involved in the pathogenesis of this disease. In this context, evolutionary studies can be applied to identify peptidase families that have been expanded in genomes over time in response to different selection pressures. Using a phylogenomic approach, we searched for expanded endopeptidase families in the S. mansoni predicted proteome with the aim of contributing to the knowledge of such enzymes as potential therapeutic targets. We found three endopeptidase families that comprise leishmanolysins (metallopeptidase M8 family), cercarial elastases (serine peptidase S1 family) and cathepsin D proteins (aspartic peptidase A1 family). Our results suggest that the Schistosoma members of these families originated from successive gene duplication events in the parasite lineage after its diversification from other metazoans. Overall, critical residues are conserved among the duplicated genes/proteins. Furthermore, each protein family displays a distinct evolutionary history. Altogether, this work provides an evolutionary view of three S. mansoni peptidase families, which allows for a deeper understanding of the genomic complexity and lineage-specific adaptations potentially related to the parasitic lifestyle.


Assuntos
Animais , Catepsina D/genética , Metaloproteases/genética , Elastase Pancreática/genética , Schistosoma mansoni/enzimologia , Evolução Biológica , Filogenia , Proteômica , Schistosoma mansoni/genética , Schistosoma mansoni/patogenicidade
2.
Genet. mol. biol ; 26(4): 411-418, dec. 2003. ilus, tab
Artigo em Inglês | LILACS | ID: lil-355285

RESUMO

Partial cytochrome b and 12S rDNA mitochondrial DNA sequences of eight representatives of the Ramphastidae family were analyzed. We applied the linearized tree method to identify sequences evolving at similar rates and estimated the divergence times among some of the taxa analyzed. After excluding Ramphastos tucanus and Capito dayi from our data set, the remaining taxa presented a constant rate of DNA substitution, and branch lengths could be re-estimated with a clock constraint using the maximum likelihood method. Branch lengths were calibrated assuming that Galliformes and Piciformes split around 100 million years ago (mya). Our results indicate that Ramphastinae, and probably Capitoninae, diverged from other Piciformes in the Late Cretaceous (82 mya), suggesting that Piciformes is another avian order that survived the mass extinction event occurred 65 mya at the Cretaceous/Tertiary (K/T) boundary. The divergence times estimated within the Ramphastinae genera cover the period from the Middle Eocene (around 47 mya) through the Late Miocene (9.5 mya). Our estimate of divergence time is coincidental with the split of the African and the South American continents and other intense geologic activities and modifications of the areas which correspond to the current Neotropics. These events might have influenced the diversification of Ramphastinae in South America.


Assuntos
Animais , Aves , DNA Mitocondrial , Variação Genética , Filogenia , Citocromos b , Geografia , Paleontologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA