Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Indian J Exp Biol ; 2019 Nov; 57(11): 825-838
Artigo | IMSEAR | ID: sea-191411

RESUMO

Sugar acids are organic acids formed by the oxidation of carbonyl or hydroxyl group of monosaccharides to carboxylic acid group. D-xylonic acid derived via bioconversion of D-xylose is a promising platform chemical with various applications in food, chemical, agriculture, and pharmaceutical industries. The efficacy of a newly isolated culture identified as Pseudoduganella danionis to produce D-xylonic acid from D-xylose was investigated. The culture appeared to be potent for a feasible bioprocess development for xylonic acid production. Production medium containing 10 g/L D-xylose resulted in 6.5 g/L D-xylonic acid production after 120 h of incubation with 1% (v/v) inoculum of P. Danionis.

2.
Indian J Exp Biol ; 2014 Nov; 52(11): 1082-1089
Artigo em Inglês | IMSEAR | ID: sea-153794

RESUMO

Sorghum is one of the commercially feasible lignocellulosic biomass and has a great potential of being sustainable feedstock for renewable energy. As with any lignocellulosic biomass, sorghum also requires pretreatment which increases its susceptibility to hydrolysis by enzymes for generating sugars which can be further fermented to alcohol. In the present study, sorghum biomass was evaluated for deriving maximum fermentable sugars by optimizing various pretreatment parameters using statistical optimization methods. Pretreatment studies were done with H2SO4, followed by enzymatic saccharification. The efficiency of the process was evaluated on the basis of production of the total reducing sugars released during the process. Compositional analysis was done for native as well as pretreated biomass and compared. The biomass pretreated with the optimized conditions could yield 0.408 g of reducing sugars /g of pretreated biomass upon enzymatic hydrolysis. The cellulose content in the solid portion obtained after pretreatment using optimised conditions was found to be increased by 43.37% with lesser production of inhibitors in acid pretreated liquor.


Assuntos
Biomassa , Carboidratos/isolamento & purificação , Celulase/farmacologia , Fermentação , Ácido Clorídrico/farmacologia , Concentração de Íons de Hidrogênio , Hidrólise , Ácido Nítrico/farmacologia , Extratos Vegetais/química , Caules de Planta/química , Caules de Planta/efeitos dos fármacos , Polissacarídeos/metabolismo , Sorghum/química , Sorghum/efeitos dos fármacos , /farmacologia , Temperatura , Xilose/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA