Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Analytical Chemistry ; (12): 1414-1420, 2014.
Artigo em Chinês | WPRIM | ID: wpr-454005

RESUMO

The effects of linking loop structure between guanine ( G) repeats on G-quadruplex formation were investigated. The results show that the unfavorable effects of long linking loops on G-quadruplex formation can be overcome by introducing double-stranded structures in linking loop regions. This finding provides a new way for sensor design. The activity of G-quadruplex DNAzyme can be tuned by utilizing target-mediated formation of double-stranded structures in loops. As an example, T-T mismatches are introduced in loops to destroy double-stranded structures. The stabilization of Hg2+ to T-T mismatches promotes the reformation of double-stranded structures. Correspondingly, the oligonucleotide folds into G-quadruplex, which binds with hemin to form peroxidase-like G-quadruplex DNAzyme. Hg2+ sensor is designed based on this principle. Using this method, Hg2+ quantitation is achieved in the concentration range of 10-700 nmol/L, with a detection limit of 8. 7 nmol/L. Cysteine will compete with T bases to bind with Hg2+, releasing Hg2+from T-Hg2+-T base pairs. Thus cysteine can also be quantified with this system in the concentration range of 20-700 nmol/L, with a detection limit of 14 nmol/L.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA