Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Allergy, Asthma & Immunology Research ; : 4-23, 2020.
Artigo em Inglês | WPRIM | ID: wpr-762186

RESUMO

MicroRNAs (miRs) are single-stranded RNAs of 18-25 nucleotides. These molecules regulate gene expression at the post-transcriptional level; several of these are differentially expressed in asthma as well as in viral acute respiratory infections (ARIs), the main triggers of acute asthma exacerbations. In recent years, miRs have been studied in order to discover drug targets as well as biomarkers for diagnosis, disease severity and prognosis. We describe recent findings on miR expression and function in asthma and their role in the regulation of viral ARIs, according to cell tissue specificity and asthma severity. By combining the above information, we identify miRs that may be important in virus-induced asthma exacerbations. This is the first attempt to link miR profiles of asthmatic patients and ARI-induced miRs, addressing the question of whether there might be a specific miR deficit in asthmatic subjects that make them more susceptible and/or reactive to infection.


Assuntos
Humanos , Asma , Biomarcadores , Diagnóstico , Progressão da Doença , Expressão Gênica , Inflamação , MicroRNAs , Nucleotídeos , Especificidade de Órgãos , Prognóstico , Infecções Respiratórias , RNA
2.
Asia Pacific Allergy ; (4): e7-2019.
Artigo em Inglês | WPRIM | ID: wpr-750167

RESUMO

Childhood asthma is one condition within a family of allergic diseases, which includes allergic rhinitis, atopic dermatitis, and food allergy, among others. Omalizumab is an anti-IgE antibody therapy that was approved in Japan for children with asthma and added to the Japanese pediatric asthma guidelines in 2017. This review highlights the Japanese clinical perspectives in pediatric allergic asthma, and consideration for allergic comorbidities, and reflects on omalizumab clinical trials in progress to present comprehensive future opportunities.


Assuntos
Criança , Humanos , Povo Asiático , Asma , Comorbidade , Dermatite Atópica , Hipersensibilidade Alimentar , Japão , Omalizumab , Rinite Alérgica
3.
Allergy, Asthma & Immunology Research ; : 144-154, 2018.
Artigo em Inglês | WPRIM | ID: wpr-713201

RESUMO

PURPOSE: In order to gain an insight into determinants of reported variability in immune responses to respiratory viruses in human bronchial epithelial cells (HBECs) from asthmatics, the responses of HBEC to viral infections were evaluated in HBECs from phenotypically heterogeneous groups of asthmatics and in healthy controls. METHODS: HBECs were obtained during bronchoscopy from 10 patients with asthma (6 atopic and 4 non-atopic) and from healthy controls (n=9) and grown as undifferentiated cultures. HBECs were infected with parainfluenza virus (PIV)-3 (MOI 0.1) and rhinovirus (RV)-1B (MOI 0.1), or treated with medium alone. The cell supernatants were harvested at 8, 24, and 48 hours. IFN-α, CXCL10 (IP-10), and RANTES (CCL5) were analyzed by using Cytometric Bead Array (CBA), and interferon (IFN)-β and IFN-λ1 by ELISA. Gene expression of IFNs, chemokines, and IFN-regulatory factors (IRF-3 and IRF-7) was determined by using quantitative PCR. RESULTS: PIV3 and RV1B infections increased IFN-λ1 mRNA expression in HBECs from asthmatics and healthy controls to a similar extent, and virus-induced IFN-λ1 expression correlated positively with IRF-7 expression. Following PIV3 infection, IP-10 protein release and mRNA expression were significantly higher in asthmatics compared to healthy controls (median 36.03-fold). No differences in the release or expression of RANTES, IFN-λ1 protein and mRNA, or IFN-α and IFN-β mRNA between asthmatics and healthy controls were observed. However, when asthmatics were divided according to their atopic status, HBECs from atopic asthmatics (n=6) generated significantly more IFN-λ1 protein and demonstrated higher IFN-α, IFN-β, and IRF-7 mRNA expressions in response to PIV3 compared to non-atopic asthmatics (n=4) and healthy controls (n=9). In response to RV1B infection, IFN-β mRNA expression was lower (12.39-fold at 24 hours and 19.37-fold at 48 hours) in non-atopic asthmatics compared to atopic asthmatics. CONCLUSIONS: The immune response of HBECs to virus infections may not be deficient in asthmatics, but seems to be modified by atopic status.


Assuntos
Humanos , Asma , Brônquios , Broncoscopia , Quimiocina CCL5 , Quimiocinas , Ensaio de Imunoadsorção Enzimática , Células Epiteliais , Expressão Gênica , Imunidade Inata , Interferons , Infecções por Paramyxoviridae , Reação em Cadeia da Polimerase , Rhinovirus , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA