Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
J Biosci ; 2003 Feb; 28(1): 121-8
Artigo em Inglês | IMSEAR | ID: sea-110882

RESUMO

Increasing evidence supports the role of excitotoxicity in neuronal cell injury. Thus, it is extremely important to explore methods to retard or reverse excitotoxic neuronal injury. In this regard, certain dietary compounds are beginning to receive increased attention, in particular those involving phytochemicals found in medicinal plants in alleviating neuronal injury. In the present study, we examined whether medicinal plant extracts protect neurons against excitotoxic lesions induced by kainic acid (KA) in female Swiss albino mice. Mice were anesthetized with ketamine and xylazine (200 mg and 2 mg/kg body wt. respectively) and KA (0.25 microg in a volume of 0.5 microl) was administered to mice by intra hippocampal injections. The results showed an impairment of the hippocampus region of brain after KA injection. The lipid peroxidation and protein carbonyl content were significantly (P < 0.05) increased in comparison to controls. Glutathione peroxidase (GPx) activity (EC 1.11.1.9) and reduced glutathione (GSH) content declined after appearance of excitotoxic lesions. As GPx and GSH represent a major pathway in the cell for metabolizing hydrogen peroxide (H2O2), their depletion would be expected to allow H2O2 to accumulate to toxic levels. Dried ethanolic plant extracts of Withania somnifera (WS), Convolvulus pleuricauas (CP) and Aloe vera (AV) dissolved in distilled water were tested for their total antioxidant activity. The diet was prepared in terms of total antioxidant activity of plant extracts. The iron (Fe3+) reducing activity of plant extracts was also tested and it was found that WS and AV were potent reductants of Fe3+ at pH 5 5. CP had lower Fe3+ reducing activity in comparison to WS and AV. Plant extracts given singly and in combination 3 weeks prior to KA injections resulted in a decrease in neurotoxicity. Measures of lipid peroxidation and protein carbonyl declined. GPx activity and GSH content were elevated in hippocampus supplemented with WS and combination of WS + CP + AV. However, when CP and AV were given alone, the changes in the GPx activity and GSH content were not significant. Although the major factors involved in these properties of phytochemicals remain to be specified, the finding of this study has suggested that phytochemicals present in plant extracts mitigate the effects of excitotoxicity and oxidative damage in hippocampus and this might be accomplished by their antioxidative properties.


Assuntos
Aloe/química , Animais , Antioxidantes/farmacologia , Convolvulus/química , Etanol/química , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Glutationa/efeitos dos fármacos , Glutationa Peroxidase/efeitos dos fármacos , Hipocampo/citologia , Ácido Caínico/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Withania/química
2.
Indian J Physiol Pharmacol ; 1998 Oct; 42(4): 440-52
Artigo em Inglês | IMSEAR | ID: sea-108616

RESUMO

Reactive oxygen species (ROS) such as the superoxide anion radical (O2.-) hydrogen peroxide (H2O2) and hydroxyl radical (.OH) have been implicated in the pathophysiology of various states, including ischemia reperfusion injury, haemorrhagic shock, atherosclerosis, heart failure, acute hypertension and cancer. The free radicals, nitric oxide (NO) and O2.- react to form peroxynitrite (ONOO-), a potent cytotoxic oxidant. A potential mechanism of oxidative damage is the nitration of tyrosine residues of protein, peroxidation of lipids, degradation of DNA and oligonucleosomal fragments. Several mechanisms are responsible for the protection of the cells from potential cytotoxic damage caused by free radicals. Cells have developed various enzymatic and nonenzymatic defense systems to control excited oxygen species, however, a certain fraction escapes the cellular defense and may cause permanent or transient damage to nucleic acids within the cells, leading to such events as DNA strand breakage and disruption of Ca2+ metabolism. There is currently great interest in the possible role of ROS in causing DNA damage that leads to cancer and spontaneous mutations. A high rate of oxidative damage to mammalian DNA has been demonstrated by measuring oxidized DNA bases excreted in urine after DNA repair. The rate of oxidative DNA damage is directly related to the metabolic rate and inversely related to life span of the organism.


Assuntos
Animais , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Humanos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA