Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Protein & Cell ; (12): 875-882, 2012.
Artigo em Inglês | WPRIM | ID: wpr-757841

RESUMO

Neural stem cells and neural progenitor cells (NPCs) exist throughout life and are mobilized to replace neurons, astrocytes and oligodendrocytes after injury. Stromal cell-derived factor 1 (SDF-1, now named CXCL12) and its receptor CXCR4, an α-chemokine receptor, are critical for NPC migration into damaged areas of the brain. Our previous studies demonstrated that immune activated and/or HIV-1-infected human monocyte-derived-macrophages (MDMs) induced a substantial increase of SDF-1 production by human astrocytes. However, matrix metalloproteinase (MMP)-2, a protein up-regulated in HIV-1-infected macrophages, is able to cleave four amino acids from the N-terminus of SDF-1, resulting in a truncated SDF-1(5-67). In this study, we investigate the diverse signaling and function induced by SDF-1α and SDF-1(5-67) in human cortical NPCs. SDF-1(5-67) was generated by incubating human recombinant SDF-1α with MMP-2 followed by protein determination via mass spectrometry, Western blotting and ELISA. SDF-1α induced time-dependent phosphorylation of extracellular signal-regulated kinases (ERK) 1/2, Akt-1, and diminished cyclic adenosine monophosphate (cAMP). In contrast, SDF-1(5-67) failed to induce these signaling. SDF-1α activation of CXCR4 induced migration of NPCs, an effect that is dependent on ERK1/2 and Akt-1 pathways; whereas SDF-1(5-67) failed to induce NPC migration. This observation provides evidence that MMP-2 may affect NPC migration through post-translational processing of SDF-1α.


Assuntos
Humanos , Movimento Celular , Células Cultivadas , Quimiocina CXCL12 , Metabolismo , AMP Cíclico , Metabolismo , Metaloproteinase 2 da Matriz , Metabolismo , Proteína Quinase 1 Ativada por Mitógeno , Metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Metabolismo , Células-Tronco Neurais , Biologia Celular , Metabolismo , Fosforilação , Proteólise , Proteínas Proto-Oncogênicas c-akt , Metabolismo , Receptores CXCR4 , Metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA