Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Adicionar filtros








Intervalo de ano
1.
Indian J Med Microbiol ; 2019 Sep; 37(3): 423-425
Artigo | IMSEAR | ID: sea-198896

RESUMO

Diphtheria is a dreadful disease caused by Corynebacterium diphtheriae. Lysogenised bacteriophages carrying toxin gene in C. diphtheriae can make the strain toxigenic. However, such phage disseminates the toxin genes to other strains when it undergoes lytic phase. As little is known about the phage diversity in C. diphtheriae in India, the present study was undertaken to investigate the prophages integrated into the genome of 29 clinical isolates of C. diphtheriae using whole-genome shotgun sequencing. Amongst these isolates, 27 were toxigenic, while 2 were non-toxigenic strains. Of the 27 toxigenic strains, all harbored known phages carrying toxin gene and two other phages with unknown function. However, the two non-toxin strains did not harbour any of the phages in the genome. It is imperative to devise prevention strategies that hinder the dissemination of toxin by prophages, as it may increase the complications of diphtheria post-immunisation.

2.
Indian J Med Microbiol ; 2019 Jun; 37(2): 198-202
Artigo | IMSEAR | ID: sea-198884

RESUMO

Background: Non-typhoidal Salmonella (NTS) infection is a serious public health problem globally. Although NTS infections are self-limited, antimicrobial therapy is recommended for severe infections and immunocompromised patients. Antimicrobial resistance (AMR) in these pathogens further limits its therapeutic options. Here, we report an incidence of ceftriaxone resistance in NTS over the past 9 years in a southern Indian region. Materials and Methods: Molecular mechanisms of resistance in ceftriaxone-resistant NTS have been tested by both phenotypic and molecular methods. Minimum inhibitory concentration was determined by the E-test and broth microdilution method. AMR gene markers of ?-lactamases such as AmpCs (blaMOX, blaCMY, blaDHA, blaFOX, blaACC and blaACT) and extended-spectrum ?-lactamases (ESBLs) (blaSHV, blaTEM, blaVEB, blaPER, blaCTXM-1like,blaCTXM-2like, blaCTXM-8like, blaCTXM-9like and blaCTXM-25like) were screened. The presence of IncH12 and IncI1 plasmid was also analysed. Results: The study reports a 5% prevalence of ceftriaxone resistance in NTS. The most common serogroup was Salmonella Group B followed by Salmonella Group E and Salmonella group C1/C2. The occurrence of blaCTX-M-1, blaTEM, blaCMY and blaSHV genes was observed in 54%, 54%, 48% and 3% of the isolates, respectively. Interestingly, few isolates carried dual resistance genes (ESBLs and AmpCs). IncH12 and IncI1 plasmid was identified in isolates carrying ESBL and AmpC genes, respectively. Conclusion: This study shows that ceftriaxone resistance is mainly mediated by ?-lactamases such as ESBL and AmpC. As the incidence of ceftriaxone resistance is rising gradually over the years, it is imperative to monitor the AMR in this species.

3.
Indian J Med Microbiol ; 2019 Mar; 37(1): 34-41
Artigo | IMSEAR | ID: sea-198857

RESUMO

Introduction: Carbapenem resistance (CR) in Klebsiella pneumoniae is mainly mediated by bla NDM and bla OXA-48 carbapenemases. Newer Food and Drug Administration-approved antimicrobial ceftazidime/avibactam (C/A) has a potent activity against bla OXA-48-like producers. However, its activity is limited in organisms co-producing bla NDM and bla OXA-48-like. Addition of aztreonam (ATM) to C/A potentially expands the spectrum of coverage for carbapenemase co-producers. With this, we aimed to determine the synergistic activity of combination of C/A plus ATM against bla NDM, bla OXA-48-like and co-producers of bla NDM + bla OXA-48-like producing CR Klebsiella pneumoniae (CRKp). Materials and Methods: A total of 12 isolates of CRKp-harbouring genes encoding bla NDM and bla OXA-48-like were tested. Minimum inhibitory concentrations (MICs) were determined for several antimicrobial agents, including C/A (0.5�?g/ml) by broth microdilution method. Checkerboard assay was performed for the combination of C/A plus ATM at varying concentrations. Fold differences in the MIC of C/A with and without addition of ATM were determined to infer synergistic effects. Results: MIC of C/A and ATM ranged from 0.5 to >8 ?g/ml and 64 to 2048 ?g/ml, respectively. Two isolates were susceptible to C/A with MIC of 0.5 and 1 ?g/ml, while others were resistant with MIC of >8 ?g/ml. Synergistic effects of >8-fold MIC difference in C/A MIC were noted with addition of ATM at 4 ?g/ml. This was observed for all CRKp with profiles of bla NDM, bla OXA-48-like and co-producers of bla NDM + bla OXA-48-like genes, which was a promising effect. Notably, all five of the colistin-resistant CRKp were inhibited with >8-fold MIC difference in the combination of C/A plus ATM at 4 ?g/ml. Conclusion: With the increasing burden of CRKp, the use of C/A with ATM combination seems to be very promising, especially for bla NDM, bla OXA-48-like and co-producers of bla NDM + bla OXA-48like carbapenemases.

4.
Indian J Med Microbiol ; 2019 Mar; 37(1): 91-94
Artigo | IMSEAR | ID: sea-198841

RESUMO

Tigecycline is a reserve antibiotic increasingly used for the treatment of multidrug-resistant bacteria, especially Klebsiella pneumoniae and Acinetobacter baumannii. At present, there are concerns regarding the testing and interpretation of tigecycline susceptibility to bugs such as K. pneumoniae and A. baumannii, which limit clinicians in appropriate usage. Use of appropriate method for testing such as broth microdilution is essential. In addition, tigecycline susceptibility testing is a challenge due to inconsistent results from various antimicrobial susceptibility testing automated platforms. There is a great need to define a suitable methodology along with interpretive criteria, especially for K. pneumoniae and A. baumannii. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Food and Drug Administration (FDA) breakpoints show wide variation and are defined for different set of organisms. Non-species-related pharmacokinetic/pharmacodynamic (PK/PD) breakpoints defined by the EUCAST can be used for organisms such as K. pneumoniae and A. Baumannii.

5.
Indian J Med Microbiol ; 2019 Mar; 37(1): 72-90
Artigo | IMSEAR | ID: sea-198840

RESUMO

Antimicrobial resistance is on the rise across the globe. Increasing incidence of infections due to carbapenem resistance organisms is becoming difficult to treat, due to the limited availability of therapeutic agents. Very few agents such as colistin, fosfomycin, tigecycline and minocycline are widely used, despite its toxicity. However, with the availability of novel antimicrobials, beta-lactam/beta-lactamase inhibitor-based and non-beta-lactam-based agents could be of great relief. This review covers three important aspects which include (i) current management of carbapenem-resistant infections, (ii) determination of specific types of carbapenemases produced by multidrug-resistant and extensively drug-resistant Gram-negative pathogens and (iii) the currently available novel beta-lactam/beta-lactamase inhibitors and non-beta-lactam-based agents' laboratory findings, clinical outcome and implications.

6.
Indian J Med Microbiol ; 2019 Mar; 37(1): 67-71
Artigo | IMSEAR | ID: sea-198839

RESUMO

Background: Prosthetic joint infection (PJI) is one of the most challenging cases that confront modern orthopaedics. Two-stage revision, which is the standard of care for PJI, is the preferred mode of treatment for these infections. Aims and Objectives: To study the microbiological profile of prosthetic joint infections (PJI) in the hip and to assess the efficacy of a two stage revision surgery for PJI. We also aimed to study the sensitivity and specificity of ESR and CRP in the diagnosis of PJI. Materials and Methods: The microbiological profile, clinical and radiological outcomes of 22 patients who had a two-stage revision for PJI of the hip between 2013 and 2017 were retrospectively analysed. PJI was defined using the criteria provided by the International Consensus Statement on PJI 2013. Results: Staphylococcus aureus was found to be the most common organism in PJI. Debridement was successful in removing the organism in 74% of PJI. At the time of re-implantation (second stage), six joints grew organisms that were different from that isolated at the index debridement - coagulase-negative staphylococci (3cases) and enterococci (3cases). Other infection parameters for these patients were negative. None of the patients who had two-stage revision surgery had clinical evidence of reinfection or radiological evidence of loosening at a mean of 2-year follow-up. An ESR cut off of >30mm/hr had a sensitivity of 75% and specificity of 88% in predicting PJI. A CRP >10mg/L had a sensitivity of 75% and specificity of 69%. The sensitivity and specificity of using both ESR and CRP cut-offs in the diagnosis of infection were 57% and 94%, respectively. The positive predictive value was 94% and negative predictive value was 56%. Conclusion: The outcomes of the study justify a two-stage revision arthroplasty for PJI of the hip. The use of ESR and CRP as screening tests for the success of debridement has value - but should be interpreted with caution.

7.
Artigo | IMSEAR | ID: sea-195797

RESUMO

Background & objectives: Plasmid has led to increase in resistant bacterial pathogens through the exchange of antimicrobial resistance (AMR) genetic determinants through horizontal gene transfer. Baseline data on the occurrence of plasmids carrying AMR genes are lacking in India. This study was aimed to identify the plasmids associated with AMR genetic determinants in ESKAPE pathogens. Methods: A total of 112 ESKAPE isolates including Escherichia coli (n=37), Klebsiella pneumoniae (n=48, including 7 pan-drug susceptible isolates), Acinetobacter baumannii (n=8), Pseudomonas aeruginosa (n=1) and Staphylococcus aureus (n=18) were analyzed in the study. Isolates were screened for antimicrobial susceptibility and whole genome sequencing of isolates was performed using Ion Torrent (PGM) sequencer. Downstream data analysis was done using PATRIC, ResFinder, PlasmidFinder and MLSTFinder databases. All 88 whole genome sequences (WGS) were deposited at GenBank. Results: Most of the study isolates showed resistant phenotypes. As analyzed from WGS, the isolates included both known and unknown sequence types. The plasmid analysis revealed the presence of single or multiple plasmids in the isolates. Plasmid types such as IncHI1B(pNDM-MAR), IncFII(pRSB107), IncFIB(Mar), IncFIB(pQil), IncFIA, IncFII(K), IncR, ColKP3 and ColpVC were present in K. pneumoniae. In E. coli, IncFIA, IncFII, IncFIB, Col(BS512), IncL1, IncX3 and IncH were present along with other types. S. aureus harboured seven different plasmid groups pMW2 (rep 5), pSAS1 (rep 7), pDLK1 (rep 10), pUB110 (rep US12), Saa6159 (rep 16), pKH12 (rep 21) and pSA1308 (rep 21). The overall incidence of IncF type plasmids was 56.5 per cent followed by Col type plasmids 18.3 per cent and IncX 5.3 per cent. Other plasmid types identified were <5 per cent. Interpretation & conclusions: Results from the study may serve as a baseline data for the occurrence of AMR genes and plasmids in India. Information on the association between phenotypic and genotypic expression of AMR was deciphered from the data. Further studies on the mechanism of antibiotic resistance dissemination are essential for enhancing clinical lifetime of antibiotics.

8.
Artigo | IMSEAR | ID: sea-195794

RESUMO

Background & objectives: Klebsiella pneumoniae (KP), a common cause of invasive infections, is often extensively drug resistant in India. At present, studies on resistance mechanism and clonal relationship of KP from India are limited. The present study was undertaken to determine the resistance mechanism and clonal relationship of colistin-resistant isolates obtained from various specimens. Carbapenemases were also determined since the isolates were carbapenem resistant. Methods: Sixty five isolates from blood, exudates and respiratory specimens collected between 2016 and 2017 were studied. Colistin minimum inhibitory concentration (MIC) was performed by broth-micro dilution method. Multiplex PCR was carried out to determine carbapenemases. Targeted sequencing was performed to determine mutations in mgrB, phoP, phoQ and multilocus sequence typing was performed to determine the prevalent clones. Results: Colistin MIC ranged from 4 to 256 ?g/ml. SHV, TEM and CTX-M were co-produced in 60 per cent and OXA48-like in 71 per cent. Thirteen isolates had mutations in mgrB. Mutations included a premature stop codon at 21st amino acid, the presence of insertion sequences such as IS903, IS Kpn 14 and ISK pn 26; and elongation of mgrB. Novel mutations were also observed among phoP and phoQ genes. Colistin resistance due to mcr genes was absent. Fifteen clonal types were seen with ST231, ST14 and ST2096 being predominant. Interpretation & conclusions: This study revealed the changing trend of carbapenem resistance mechanism predominantly to OXA48-like from NDM. Known mgrB mutations and novel mutations in phoP and phoQ were detected. There was no plasmid-mediated colistin resistance. ST14 and ST231 were international clones associated with carbapenem resistance. Colistin-resistant KP was of diverse clones with predominantly ST231, ST14 and ST2096.

9.
Indian J Med Microbiol ; 2018 Sep; 36(3): 344-351
Artigo | IMSEAR | ID: sea-198805

RESUMO

Background: Pseudomonas aeruginosa is one of the most common opportunistic pathogens that cause severe infections in humans. The burden of carbapenem resistance is particularly high and is on the rise. Very little information is available on the molecular mechanisms and its clonal types of carbapenem-resistant P. aeruginosa seen in Indian hospitals. This study was undertaken to monitor the ?-lactamase profile and to investigate the genetic relatedness of the carbapenemase-producing (CP) P. aeruginosa collected across different hospitals from India. Materials and Methods: A total of 507 non-duplicate, carbapenem-resistant P. aeruginosa isolated from various clinical specimens collected during 2014–2017 across seven Indian hospitals were included. Conventional multiplex polymerase chain reaction for the genes encoding beta-lactamases such as extended-spectrum beta-lactamase (ESBL) and carbapenemase were screened. A subset of isolates (n = 133) of CP P. aeruginosa were genotyped by multilocus sequence typing (MLST) scheme. Results: Of the total 507 isolates, 15%, 40% and 20% were positive for genes encoding ESBLs, carbapenemases and ESBLs + carbapenemases, respectively, whilst 25% were negative for the ?-lactamases screened. Amongst the ESBL genes, blaVEB is the most predominant, followed by blaPER and blaTEM, whilst blaVIM and blaNDM were the most predominant carbapenemases seen. However, regional differences were noted in the ?-lactamases profile across the study sites. Genotyping by MLST revealed 54 different sequence types (STs). The most common are ST357, ST235, ST233 and ST244. Six clonal complexes were found (CC357, CC235, CC244, CC1047, CC664 and CC308). About 24% of total STs are of novel types and these were found to emerge from the high-risk clones. Conclusion: This is the first large study from India to report the baseline data on the molecular resistance mechanisms and its association with genetic relatedness of CP P. aeruginosa circulating in Indian hospitals. blaVIM- and blaNDM-producing P. aeruginosa is the most prevalent carbapenemase seen in India. Majority of the isolates belongs to the high-risk international clones ST235, ST357 and ST664 which is a concern.

10.
Indian J Med Microbiol ; 2018 Sep; 36(3): 334-343
Artigo | IMSEAR | ID: sea-198804

RESUMO

Antimicrobial resistance (AMR) is a major public health concern across the globe, and it is increasing at an alarming rate. Multiple classes of antimicrobials have been used for the treatment of infectious diseases. Rise in the AMR limits its use and hence the prerequisite for the newer agents to combat drug resistance. Among the infections caused by Gram-negative organisms, beta-lactams are one of the most commonly used agents. However, the presence of diverse beta-lactamases hinders its use for therapy. To overcome these enzymes, beta-lactamase inhibitors are being discovered. The aim of this document is to address the burden of AMR in India and interventions to fight against this battle. This document addresses and summarises the following: The current scenario of AMR in India (antimicrobial susceptibility, resistance mechanisms and molecular epidemiology of common pathogens); contentious issues in the use of beta-lactam/beta-lactamase inhibitor as an carbapenem sparing agent; role of newer beta-lactam/beta-lactamase inhibitor agents with its appropriateness to Indian scenario and; the Indian Council of Medical Research interventions to combat drug resistance in terms of surveillance and infection control as a national response to AMR. This document evidences the need for improved national surveillance system and country-specific newer agents to fight against the AMR.

11.
Indian J Med Microbiol ; 2018 Sep; 36(3): 303-316
Artigo | IMSEAR | ID: sea-198793

RESUMO

Infections due to Pseudomonas aeruginosa is a major health concern, especially hospital-acquired infections, in critically ill individuals. Antimicrobial resistance (AMR) increases the morbidity and mortality rates associated with pseudomonal infections. In this review, we aim to address two major aspects of P. aeruginosa. The first part of the review will focus on the burden of AMR and its prevailing mechanisms seen in India, while the second part will focus on the challenges and approaches in the management with special emphasis on the role of newer antimicrobial agents.

12.
Indian J Med Microbiol ; 2018 Mar; 36(1): 32-36
Artigo | IMSEAR | ID: sea-198749

RESUMO

Background: The emergence of antibiotic resistance among bacterial pathogens in the hospital and community has increased the concern to the health-care providers due to the limited treatment options. Surveillance of antimicrobial resistance (AMR) in frequently isolated bacterial pathogens causing severe infections is of great importance. The data generated will be useful for the clinicians to decide empiric therapy on the local epidemiological resistance profile of the antimicrobial agents. This study aims to monitor the distribution of bacterial pathogen and their susceptibility pattern to the commonly used antimicrobial agents. Materials and Methods: This study includes Gram-negative bacilli collected from intra-abdominal, urinary tract and respiratory tract infections during 2014–2016. Isolates were collected from seven hospitals across India. All the study isolates were characterised up to species level, and minimum inhibitory concentration was determined for a wide range of antimicrobials included in the study panel. The test results were interpreted as per standard Clinical Laboratory Standards Institute guidelines. Results: A total of 2731 isolates of gram-negative bacteria were tested during study period. The most frequently isolated pathogens were 44% of Escherichia coli (n = 1205) followed by 25% of Klebsiella pneumoniae (n = 676) and 11% of Pseudomonas aeruginosa (n = 308). Among the antimicrobials tested, carbapenems were the most active, followed by amikacin and piperacillin/tazobactam. The rate of extended-spectrum beta-lactamase (ESBL)-positive isolates were ranged from 66%–77% in E. coli to 61%–72% in K. pneumoniae, respectively. Overall, colistin retains its activity in > 90% of the isolates tested and appear promising. Conclusion: Increasing rates of ESBL producers have been noted, which is alarming. Further, carbapenem resistance was also gradually increasing, which needs much attention. Overall, this study data show that carbapenems, amikacin and colistin continue to be the best agents available to treat drug-resistant infections. Thus continuous monitoring of susceptibility profile of the clinically important Gram-negative pathogens is of great importance to guide effective antimicrobial therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA