Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Hepatology ; (12): 577-581, 2011.
Artigo em Chinês | WPRIM | ID: wpr-330690

RESUMO

To investigate the effect of hepatitis B virus X protein(HBx) on CtBP-interacting protein(CtIP) which is an important repair factor of DNA double strand break damage in HepG2 cells induced by bleomycin. A HBx stably expressing HepG2 cell line and a control HepG2 cell line with empty vector transfected were established. After the double strand break (DSB) damage occurred, the mRNA and protein levels of CtIP were detected by Real-time PCR and Western blot assay respectively, cell cycle profiles and apoptotic cell death were determined by a flow cytometry, and the position of CtIP in cells was observed by confocal laser scanning microscopy. It showed that HepG2 cells transfected with hepatitis B virus X gene could stably express HBx protein. After being induced by bleomycin, the percentage of apoptotic cell was 16.90%+/-0.89% in HBx stably expressing HepG2 cell line and 15.30%+/-0.86% in control cell line, respectively (q = 2.074, P is more than to 0.05). While the percentage of death cell was 8.71%+/-0.74% in HBx stably expressing HepG2 cell line and 4.90%+/-0.46% in control cell line, respectively (q = 7.126, P is less than to 0.01). The two cell lines manifested the increase of G2/M arrest and significant difference existed between the two cell lines. HBx down regulated the expression levels of CtIP and its mRNA. The CtIP level was 0.66+/-0.04 in HepG2-HBx cell and 0.73+/-0.05 in HepG2-vec cell, respectively (t = 2.314, P is less than to 0.05). The relative mRNA level was 1.00+/-0.06 in HepG2-HBx cell and 1.23+/-0.08 in HepG2-vec cell, respectively (t = 2. 732, P is less than to 0.05). We also found that CtIP was concentrated in the cell nucleus. The research suggests that HBx may affect DNA-repair pathways by disrupting the expression of CtIP.


Assuntos
Humanos , Carcinoma Hepatocelular , Metabolismo , Células Hep G2 , Vírus da Hepatite B , Genética , Neoplasias Hepáticas , Metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA