Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Pharmaceutica Sinica B ; (6): 397-409, 2019.
Artigo em Inglês | WPRIM | ID: wpr-774978

RESUMO

Hyaluronic acid (HA) is a natural ligand of tumor-targeted drug delivery systems (DDS) due to the relevant CD44 receptor overexpressed on tumor cell membranes. However, other HA receptors (HARE and LYVE-1) are also overexpressing in the reticuloendothelial system (RES). Therefore, polyethylene glycol (PEG) modification of HA-based DDS is necessary to reduce RES capture. Unfortunately, pegylation remarkably inhibits tumor cellular uptake and endosomal escapement, significantly compromising the antitumor efficacy. Herein, we developed a Dox-loaded HA-based transformable supramolecular nanoplatform (Dox/HCVBP) to overcome this dilemma. Dox/HCVBP contains a tumor extracellular acidity-sensitive detachable PEG shell achieved by a benzoic imine linkage. The and investigations further demonstrated that Dox/HCVBP could be in a "stealth" state at blood stream for a long circulation time due to the buried HA ligands and the minimized nonspecific interaction by PEG shell. However, it could transform into a "recognition" state under the tumor acidic microenvironment for efficient tumor cellular uptake due to the direct exposure of active targeting ligand HA following PEG shell detachment. Such a transformative concept provides a promising strategy to resolve the dilemma of natural ligand-based DDS with conflicting two processes of tumor cellular uptake and nonspecific biodistribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA