Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Pharmacological Bulletin ; (12): 1450-1456, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1013735

RESUMO

Aim To explore the effect of astragaloside IV (AS-IV) on cell proliferation and collagen expression in cardiac fibroblasts (CFs) of rats induced with angiotensin II (Ang II) and its mechanism. Methods CFs were pretreated with short-chain acyl-CoA dehydrogenase (SCAD) siRNA1186 for 12 h and then co-treated with Ang TJ and AS-IV for 36 h. The expressions of SCAD, α-SMA, collagen I and collagen III in CFs were detected by Western blot. mRNA expression levels of SCAD, a-SMA, collagen I and collagen III in CFs were detected by quantitative real-time PCR. The SCAD enzymatic activity, the content of ATP, hydroxyproline and free fatty acid were measured by detection kits. Results The expression of α-SMA, collagen I and collagen III were up-regulated (all P < 0. 01) in CFs induced by Ang II compared with the control cells, and the expression and enzymatic activity of SCAD significantly decreased (P < 0. 01, P< 0. 05). The content of ATP decreased (P < 0.01), and the content of hydroxyproline and free fatty acids increased (all P < 0.01). Compared with Ang II group, SCAD expression and enzymatic activity, and ATP content were significantly increased (all P < 0.01) in Ang II + AS-TV group, but the content of hydroxyproline and free fatty acids, and the expression of α-SMA, collagen I and collagen III significantly decreased (all P < 0.01). However, compared with the Ang II + NC group, there was no significant difference in all indices in the Ang II + SiRNA1186 + AS-TV group. The protective effect of AS-TV on Ang II -induced cell proliferation and collagen expression in CFs was eliminated by the interference of SCAD SiRNA1186. Conclusions AS-IV may inhibit Ang II-induced cell proliferation and collagen expression in CFs by activating SCAD.

2.
Chinese Pharmacological Bulletin ; (12): 853-860, 2022.
Artigo em Chinês | WPRIM | ID: wpr-1014082

RESUMO

Aim To explore the effeet of riboflavin on the establishment of pressure overload-induced heart failure model in mice by thoracic aortie constrietion (TAC ) and its preventive mechanism.Methods Eight-week-old SPF C57BL/6J mice were seleeted and divided into four groups; Sham group.Sham + ribofla¬vin group, TAC group and TAC + riboflavin group.A mouse heart failure model was constructed in the TAC group.The miee in the TAC + riboflavin group were given riboflavin by gavage one week before and eight weeks after the operation.The cardiac ultrasound inde¬xes, the changes of cardiac morphology and mitochon¬drial function indexes, the expression of apoptosis pro¬teins, ATP content, SCAD mRNA and protein expres¬sion, enzyme activity and flavin adenine dinucleotide (FAD) content in myocardial tissues were detected.Hie free fatty acid content in serum and myocardial tis¬sues were also detected.Results Compared with the sham group, the cardiac function indexes of the mice in the TAC group decreased, anrl typical heart failure occurred.Moreover, the expression of SCAD, enzyme activity, ATP and FAD content in the myocardium sig-nificantly decreased, and the free fatty acid content in myocardium and serum significantly increased.Com¬pared with the TAC group, after riboflavin treatment, the cardiac function of mice in TAC + Riboflavin group was significantly improved.In addition, ATP content, SCAD expression, enzyme activity and FAD content in myocardium all significantly increased, and free fatty acid content in myocardium and serum markedly de¬creased.Conclusions Riboflavin may improve myo-cardial energy metabolism by increasing FAD content and activating SCAD, thereby inhibiting pressure over¬load-induced heart failure in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA