Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 4098-4107, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008014

RESUMO

Human induced pluripotent stem cells (hiPSCs) are promising in regenerative medicine. However, the pluripotent stem cells (PSCs) may form clumps of cancerous tissue, which is a major safety concern in PSCs therapies. Rapamycin is a safe and widely used immunosuppressive pharmaceutical that acts through heterodimerization of the FKBP12 and FRB fragment. Here, we aimed to insert a rapamycin inducible caspase 9 (riC9) gene in a safe harbor AAVS1 site to safeguard hiPSCs therapy by drug induced homodimerization. The donor vector containing an EF1α promoter, a FRB-FKBP-Caspase 9 (CARD domain) fusion protein and a puromycin resistant gene was constructed and co-transfected with sgRNA/Cas9 vector into hiPSCs. After one to two weeks screening with puromycin, single clones were collected for genotype and phenotype analysis. Finally, rapamycin was used to induce the homodimerization of caspase 9 to activate the apoptosis of the engineered cells. After transfection of hiPSCs followed by puromycin screening, five cell clones were collected. Genome amplification and sequencing showed that the donor DNA has been precisely knocked out at the endogenous AAVS1 site. The engineered hiPSCs showed normal pluripotency and proliferative capacity. Rapamycin induced caspase 9 activation, which led to the apoptosis of all engineered hiPSCs and its differentiated cells with different sensitivity to drugs. In conclusion, we generated a rapamycin-controllable hiPSCs survival by homodimerization of caspase 9 to turn on cell apoptosis. It provides a new strategy to guarantee the safety of the hiPSCs therapy.


Assuntos
Humanos , Células-Tronco Pluripotentes Induzidas , Sirolimo/metabolismo , Caspase 9/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Puromicina/metabolismo
2.
Chinese Journal of Biotechnology ; (12): 1096-1111, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927766

RESUMO

Pigs are considered as ideal donors for xenotransplantation because they have many physiological and anatomical characteristics similar to human beings. However, antibody-mediated immunity, which includes both natural and induced antibody responses, is a major challenge for the success of pig-to-primate xenotransplantation. Various genetic modification methods help to tailor pigs to be appropriate donors for xenotransplantation. In this study, we applied transcription activator-like effector nuclease (TALEN) to knock out the porcine α-1, 3-galactosyltransferase gene GGTA1, which encodes Gal epitopes that induce hyperacute immune rejection in pig-to-human xenotransplantation. Meanwhile, human leukocyte antigen-G5 gene HLA-G5, which acts as an immunosuppressive factor, was co-transfected with TALEN into porcine fetal fibroblasts. The cell colonies of GGTA1 biallelic knockout with positive transgene for HLA-G5 were chosen as nuclear donors to generate genetic modified piglets through a single round of somatic cell nuclear transfer. As a result, we successfully obtained 20 modified piglets that were positive for GGTA1 knockout (GTKO) and half of them expressed the HLA-G5 protein. Gal epitopes on the cell membrane of GTKO/HLA-G5 piglets were completely absent. Western blotting and immunofluorescence showed that HLA-G5 was expressed in the modified piglets. Functionally, the fibroblasts from the GTKO/HLA-G5 piglets showed enhanced resistance to complement-mediated lysis ability compared with those from GTKO-only or wild-type pigs. These results indicate that the GTKO/HLA-G5 pigs could be a valuable donor model to facilitate laboratory studies and clinics for xenotransplantation.


Assuntos
Animais , Humanos , Animais Geneticamente Modificados , Técnicas de Inativação de Genes , Antígenos HLA , Técnicas de Transferência Nuclear , Suínos , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA