Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Physiologica Sinica ; (6): 196-202, 2010.
Artigo em Chinês | WPRIM | ID: wpr-337759

RESUMO

Homo sapiens longevity assurance homologue 2 (LASS2) is a novel gene isolated from a human liver cDNA library by our laboratory, and it is a human homologue of the yeast longevity assurance gene LAG1 (Saccharomyces cerevisiae longevity assurance gene). According to our previous results, LASS2 could interact with subunit c of vacuolar type H(+)-ATPase (V-ATPase), and the overexpression of LASS2 could inhibit the cell growth of a human hepatocellular carcinoma (HCC) cell line, SMMC-7721. In order to understand the role of the interaction between LASS2 and V-ATPase in HCC cell growth, we transiently transfected plasmid pCMV-HA2-LASS2 into HCCLM3, a HCC cell line without the significant expression of endogenous LASS2. The pH-sensitive fluorescence probes, BCECF and BCECF-AM, were used to measure the intracellular and extracellular H(+) concentrations of HCCLM3 cells respectively. The effect of LASS2 gene on apoptosis was evaluated with Annexin-V/FITC and propidium iodide (PI) by flow cytometry. Western blot was used to detect cytochrome c (Cyt c) in the cytosol and mitochondria, as well as pro-caspase-3 in cytosol. The results showed that the cell growth of LASS2-transfected HCCLM3 cells was significantly inhibited compared with that of the mock control. LASS2 transfection increased intracellular H(+) concentration of HCCLM3 cells, while decreased extracellular H(+) concentration. Moreover, LASS2 transfection significantly enhanced the apoptosis of HCCLM3 cells. In LASS2-transfected cells, the amounts of Cyt c increased in the cytosol, while decreased in the mitochondria. Meanwhile, the expression of pro-caspase-3 in the cytosolic extracts was decreased. These results implicate that LASS2 gene might increase intracellular H(+) of HCC cells via the interaction with V-ATPase, thereby inducing cell apoptosis through mitochondrial pathway.


Assuntos
Humanos , Apoptose , Carcinoma Hepatocelular , Patologia , Caspase 3 , Metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas , Patologia , Proteínas de Membrana , Metabolismo , RNA Interferente Pequeno , Esfingosina N-Aciltransferase , Metabolismo , Transfecção , Proteínas Supressoras de Tumor , Metabolismo , ATPases Vacuolares Próton-Translocadoras , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA