Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Biomolecules & Therapeutics ; : 135-143, 2021.
Artigo em Inglês | WPRIM | ID: wpr-874317

RESUMO

Drug addiction influences most communities directly or indirectly. Increasing studies have reported the relationship between circadian-related genes and drug addiction.Per2disrupted mice exhibited more vulnerable behavioral responses against some drugs including methamphetamine (METH). However, its roles and mechanisms are still not clear. Transcriptional profiling analysis in Per2 knockout (KO) mice may provide a valuable tool to identify potential genetic involvement and pathways in enhanced behavioral responses against drugs. To explore the potential genetic involvement, we examined common differentially expressed genes (DEGs) in the striatum of drug naïve Per2 KO/wild-type (WT) mice, and before/after METH treatment in Per2 KO mice, but not in WT mice. We selected 9 common DEGs (Ncald, Cpa6, Pklr, Ttc29, Cbr2, Egr2, Prg4, Lcn2, and Camsap2) based on literature research. Among the common DEGs, Ncald, Cpa6, Pklr, and Ttc29 showed higher expression levels in drug naïve Per2 KO mice than in WT mice, while they were downregulated in Per2 KO mice after METH treatment. In contrast, Cbr2, Egr2, Prg4, Lcn2, and Camsap2 exhibited lower expression levels in drug naïve Per2 KO mice than in WT mice, while they were upregulated after METH treatment in Per2 KO mice. qRT-PCR analyses validated the expression patterns of 9 target genes before/after METH treatment in Per2 KO and WT mice. Although further research is required to deeply understand the relationship and roles of the 9 target genes in drug addiction, the findings from the present study indicate that the target genes might play important roles in drug addiction.

2.
Biomolecules & Therapeutics ; : 137-144, 2020.
Artigo | WPRIM | ID: wpr-830938

RESUMO

Epilepsy is a brain disorder that affects millions of people worldwide and is usually managed using currently available antiepileptic drugs, which result in adverse effects and are ineffective in approximately 20–25% of patients. Thus, there is growing interest in the development of new antiepileptic drugs with fewer side effects. In a previous study, we showed that a Rehmannia glutinosa (RG) water extract has protective effects against electroshock- and pentylenetetrazol (PTZ)-induced seizures, with fewer side effects. In this study, the objective was to identify the RG components that are responsible for its anticonvulsant effects. Initially, a number of RG components (aucubin, acteoside, catalpol, and mannitol) were screened, and the anticonvulsant effects of different doses of catalpol, mannitol, and their combination on electroshock- and chemically (PTZ or strychnine)-induced seizures in mice, were further assessed. Gamma-aminobutyric acid (GABA) receptor binding assay and electroencephalography (EEG) analysis were conducted to identify the potential underlying drug mechanism. Additionally, treated mice were tested using open-field and rotarod tests. Catalpol, mannitol, and their combination increased threshold against electroshock-induced seizures, and decreased the percentage of seizure responses induced by PTZ, a GABA antagonist. GABA receptor binding assay results revealed that catalpol and mannitol are associated with GABA receptor activity, and EEG analysis provided evidence that catalpol and mannitol have anticonvulsant effects against PTZ-induced seizures. In summary, our results indicate that catalpol and mannitol have anticonvulsant properties, and may mediate the protective effects of RG against seizures.

3.
Biomolecules & Therapeutics ; : 584-590, 2019.
Artigo em Inglês | WPRIM | ID: wpr-763042

RESUMO

Luteolin, a widespread flavonoid, has been known to have neuroprotective activity against various neurologic diseases such as epilepsy, and Alzheimer’s disease. However, little information is available regarding the hypnotic effect of luteolin. In this study, we evaluated the hypnotic effect of luteolin and its underlying mechanism. In pentobarbital-induced sleeping mice model, luteolin (1, and 3 mg/kg, p.o.) decreased sleep latency and increased the total sleep time. Through electroencephalogram (EEG) and electromyogram (EMG) recording, we demonstrated that luteolin increased non-rapid eye movement (NREM) sleep time and decreased wake time. To evaluate the underlying mechanism, we examined the effects of various pharmacological antagonists on the hypnotic effect of luteolin. The hypnotic effect of 3 mg/kg of luteolin was not affected by flumazenil, a GABAA receptor-benzodiazepine (GABAAR-BDZ) binding site antagonist, and bicuculine, a GABAAR-GABA binding site antagonist. On the other hand, the hypnotic effect of 3 mg/kg of luteolin was almost completely blocked by caffeine, an antagonist for both adenosine A1 and A2A receptor (A1R and A2AR), 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), an A1R antagonist, and SCH-58261, an A2AR antagonist. From the binding affinity assay, we have found that luteolin significantly binds to not only A1R but also A2AR with IC₅₀ of 1.19, 0.84 μg/kg, respectively. However, luteolin did not bind to either BDZ-receptor or GABAAR. From these results, it has been suggested that luteolin has hypnotic efficacy through A1R and A2AR binding.


Assuntos
Animais , Camundongos , Adenosina , Sítios de Ligação , Cafeína , Eletroencefalografia , Epilepsia , Movimentos Oculares , Flumazenil , Mãos , Hipnóticos e Sedativos , Luteolina , Receptor A1 de Adenosina , Receptor A2A de Adenosina , Distúrbios do Início e da Manutenção do Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA