Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. med. biol. res ; 46(2): 178-185, 01/fev. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-668775

RESUMO

We studied the effects of the acute administration of small doses of lead over time on hemodynamic parameters in anesthetized rats to determine if myocardial contractility changes are dependent or not on the development of hypertension. Male Wistar rats received 320 µg/kg lead acetate iv once, and their hemodynamic parameters were measured for 2 h. Cardiac contractility was evaluated in vitro using left ventricular papillary muscles as were Na+,K+-ATPase and myosin Ca2+-ATPase activities. Lead increased left- (control: 112 ± 3.7 vs lead: 129 ± 3.2 mmHg) and right-ventricular systolic pressures (control: 28 ± 1.2 vs lead: 34 ± 1.2 mmHg) significantly without modifying heart rate. Papillary muscles were exposed to 8 µM lead acetate and evaluated 60 min later. Isometric contractions increased (control: 0.546 ± 0.07 vs lead: 0.608 ± 0.06 g/mg) and time to peak tension decreased (control: 268 ± 13 vs lead: 227 ± 5.58 ms), but relaxation time was unchanged. Post-pause potentiation was similar between groups (n = 6 per group), suggesting no change in sarcoplasmic reticulum activity, evaluated indirectly by this protocol. After 1-h exposure to lead acetate, the papillary muscles became hyperactive in response to a β-adrenergic agonist (10 µM isoproterenol). In addition, post-rest contractions decreased, suggesting a reduction in sarcolemmal calcium influx. The heart samples treated with 8 µM lead acetate presented increased Na+,K+-ATPase (approximately 140%, P < 0.05 for control vs lead) and myosin ATPase (approximately 30%, P < 0.05 for control vs lead) activity. Our results indicated that acute exposure to low lead concentrations produces direct positive inotropic and lusitropic effects on myocardial contractility and increases the right and left ventricular systolic pressure, thus potentially contributing to the early development of hypertension.


Assuntos
Animais , Masculino , Hipertensão/fisiopatologia , Contração Miocárdica/efeitos dos fármacos , Miosinas/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Adenosina Trifosfatases/efeitos dos fármacos , Ativação Enzimática , Hipertensão/enzimologia , Contração Miocárdica/fisiologia , Miosinas/fisiologia , Ratos Wistar
2.
Braz. j. med. biol. res ; 42(10): 902-911, Oct. 2009. ilus, tab
Artigo em Inglês | LILACS | ID: lil-526185

RESUMO

Myocardial infarction leads to compensatory ventricular remodeling. Disturbances in myocardial contractility depend on the active transport of Ca2+ and Na+, which are regulated by Na+-K+ ATPase. Inappropriate regulation of Na+-K+ ATPase activity leads to excessive loss of K+ and gain of Na+ by the cell. We determined the participation of Na+-K+ ATPase in ventricular performance early and late after myocardial infarction. Wistar rats (8-10 per group) underwent left coronary artery ligation (infarcted, Inf) or sham-operation (Sham). Ventricular performance was measured at 3 and 30 days after surgery using the Langendorff technique. Left ventricular systolic pressure was obtained under different ventricular diastolic pressures and increased extracellular Ca2+ concentrations (Ca2+e) and after low and high ouabain concentrations. The baseline coronary perfusion pressure increased 3 days after myocardial infarction and normalized by 30 days (Sham 3 = 88 ± 6; Inf 3 = 130 ± 9; Inf 30 = 92 ± 7 mmHg; P < 0.05). The inotropic response to Ca2+e and ouabain was reduced at 3 and 30 days after myocardial infarction (Ca2+ = 1.25 mM; Sham 3 = 70 ± 3; Inf 3 = 45 ± 2; Inf 30 = 29 ± 3 mmHg; P < 0.05), while the Frank-Starling mechanism was preserved. At 3 and 30 days after myocardial infarction, ventricular Na+-K+ ATPase activity and contractility were reduced. This Na+-K+ ATPase hypoactivity may modify the Na+, K+ and Ca2+ transport across the sarcolemma resulting in ventricular dysfunction.


Assuntos
Animais , Masculino , Ratos , Contração Miocárdica/fisiologia , Infarto do Miocárdio/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Função Ventricular Esquerda/fisiologia , Cardiotônicos/farmacologia , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/enzimologia , Ouabaína/farmacologia , Ratos Wistar , Resistência Vascular/efeitos dos fármacos , Resistência Vascular/fisiologia , Função Ventricular Esquerda/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA