Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Rev. colomb. biotecnol ; 16(2): 68-73, jul.-dic. 2014. graf, tab
Artigo em Espanhol | LILACS | ID: lil-731732

RESUMO

Wickerhamomyces anomalus, una levadura aislada de frutas cítricas en la provincia de Misiones, Argentina, produce una poligalacturonasa (endo-PG) con capacidad macerante de tejidos vegetales. El objetivo del presente trabajo fue determinai los parámetros cinéticos y estequiométricos del crecimiento de W. anomalus y la producción de la enzima poligalacturonasa en un medio de cultivo sintético, operado en sistema por lote, en un biorreactor a escala laboratorio. Los cultivos se realizaron en un biorreactor de 4 l que contenía 3 l de un medio sintético compuesto por glucosa, pectina de citrus, vitaminas, aminoácidos, sulfato de amonio y sales, y se incubaron con agitación y aireación, a 30 °C durante 12 h. El transcurso de proceso fermentativo se siguió por medidas de biomasa, glucosa residual, actividad poligalacturonasa y contenido de O2 y CO2 de los gases a la salida del reactor. La velocidad específica de crecimiento máxima (-im) de W. anomalus fue de 0,337 h-1 y el rendimiento de biomasa producida (Yx/s) de 0,401 gx/gs. Al finalizar el cultivo, la actividad PG en el sobrenadante fue de PG de ~ 83,7 UE/ml. La actividad específica y la productividad obtenidas fueron de ~ 1,91. 10(4) UE/gx y ~ 9.301 UE/l.h, respectivamente. El cociente respiratorio fue cercano a 1 durante el proceso fermentativo. No se formó ningún otro producto, además de biomasa y CO 2 . El cultivo por lote resultó ser una buena alternativa para la producción de PG a partir de W. anomalus, obteniéndose un extracto con elevada actividad enzimática, en un medio de cultivo sintético y de bajo costo.


Wickerhamomyces anomalus, a yeast isolated from citrus fruit peels in the province of Misiones, Argentina, produces a polygalacturonase (endo-PG) with maceration activity of vegetable tissues. The objective of the present work was to determine kinetic and stoichiometric parameters of W. anomalus growth and polygalacturonase production in a synthetic culture medium, operating in a batch-type bioreactor at laboratory scale. Cultures were performed in a bioreactor of 4 l, containing 3 l of a synthetic medium composed of glucose, citrus pectin, vitamins, amino acids, ammonium sulfate and salts, and were incubated with agitation (450 rpm) and aeration at 30 °C, during 12 h. The course of the fermentation process was followed by measuring biomass, residual glucose, polygalacturonase activity and O2 and CO2 content of outlet gases from the reactor. The maximum specific growth rate (Um) of W. anomalus was 0.337 h-1 and the biomass yield (Yx/s) was 0.40 gx/gs. At the end of the culture, PG activity in the supernatant was ~84 UE/ml. The specific activity and the productivity obtained were ~1.91 104 UE/gx and ~9,301 UE/l.h, respectively. Respiratory quotient was approximately 1.0 throughout the fermentation process. No other product different from biomass and CO2 was detected. Batch culture could be an adequate alternative for the production of polygalacturonase from W. anomalus and an extract with high enzymatic activity using a synthetic and economic culture medium could be obtained.

2.
Braz. arch. biol. technol ; 57(4): 587-594, Jul-Aug/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-712936

RESUMO

The aim of this work was to study the purification and physicochemical properties of an endo-polygalacturonase (PG) produced by Wickerhamomyces anomalus isolated from the citrus fruit peels. The enzyme was purified to homogeneity from the culture filtrate of W. anomalus grown on the yeast nitrogen base medium with glucose as carbon and energy source and citrus pectin as inductor. After anion-exchange chromatography and gel filtration chromatography, PG activity was eluted as a single peak, yielding 21% of the original activity. After dialysis and cation-exchange chromatography, only one fraction with PG activity was obtained, recovering 56% of initial enzyme activity and 1.3-fold increase in specific activity. The molecular weight of the enzyme was estimated as 43 kDa by the SDS-PAGE. The enzyme exhibited maximal activity at pH 4.2 and was stable over a pH range from 3.5 to 6.0 and up to 49ºC for 10 h. The Vmax and Km values with polygalacturonic acid as substrate were 0.26 mmol/L.min and 0.173 mg/mL, respectively. Cations such as Cu+2, Fe+3, Mg+2, Mn+2 and Zn+2 did not show any significant effect on PG activity but K+ and Ca+2 reduced it. The purified PG was able to macerate cassava tissues.

3.
Electron. j. biotechnol ; 16(3): 8-8, May 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-684006

RESUMO

Background: Inulinases have been extracted and characterized from inulin-storing tissues; however, production of microbial inulinases have recently draw much attention as they offer several industrial advantages. Many microorganisms, including filamentous fungi, yeast and bacteria have been claimed as inulinase producers. These hydrolases are usually inducible and their exo-acting forms may hydrolyze fructose polymers (inulin) and oligosaccharides such as sucrose and raffinose. Fungal inulinase extracts are often produced as stable mixture of highly active fructanhydrolases. From a practical prospective, the best known inulinases to date are those produced by species of Penicillium, Aspergillus and Kluyveromyces. Results: The production of extracellular inulinase by A. kawachii in liquid cultures, using either inulin or yacon derived materials as CES as well as inulinase inducers, is reported. In addition, a partial characterization of the enzyme activity is included. Conclusions: Yacon derived products, particularly yacon juice, added to the culture medium proved to be a good CES for fungal growth as well as an inducer of enzyme synthesis. Partial characterization of the enzyme revealed that it is quite stable in a wide range of pH and temperature. In addition, characterization of the reaction products revealed that this enzyme corresponds to an exo-type. These facts are promising considering its potential application in inulin hydrolysis for the production of high fructose syrups.


Assuntos
Aspergillus/enzimologia , Glicosídeo Hidrolases/metabolismo , Temperatura , Estabilidade Enzimática , Reatores Biológicos , Asteraceae , Técnicas de Cultura Celular por Lotes , Concentração de Íons de Hidrogênio , Hidrólise , Íons
4.
Electron. j. biotechnol ; 11(1): 126-133, Jan. 2008. graf, tab
Artigo em Inglês | LILACS | ID: lil-522166

RESUMO

Protopectinases (PPases) constitute a heterogeneous group of extracellular enzymes able to release soluble pectin from insoluble protopectin in plant tissues. Geotrichum klebahnii (ATCC 42397) produces PPase-SE with endopolygalacturonase activity. PPase-SE has been used for pectin extraction and maceration of plant tissues. Here, the capacity of G. klebahnii to use different pectins as carbon and energy sources (CES) was studied, in addition to PPase-SE capacity to release pectin from lemon peel. The strain was unable to use pectin from different origins as CES. When G. klebahnii was cultivated with mixtures of different amounts of glucose and citrus pectin as CES, the biomass obtained was proportional to the initial concentration of glucose, which was completely consumed. In addition, it produced PPase-SE in a glucose-containing medium. A culture was used for the extraction of pectin from lemon peels. Pectin was enzymatically extracted simultaneously with tissue maceration, yielding 3.7 g of (dry) pectin per 100 g of (wet) lemon peel. Extracted pectin was not metabolized by the strain. It was concluded that G. klebahnii uses PPase-SE to macerate, invade and colonize plant tissues, thus releasing soluble sugars to be used as CES without metabolizing solubilized pectin.


Assuntos
Citrus , Geotrichum , Pectinas , Leveduras , Cromatografia Líquida de Alta Pressão , Poligalacturonase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA