RESUMO
@#Diseases such as malaria, dengue, Zika and chikungunya remain endemic in many countries. Setting and deploying traps to capture the host/vector species are fundamental to understand their density and distributions. Human effort to manage the trap data accurately and timely is an exhaustive endeavour when the study area expands and period prolongs. One stop mobile app to manage and monitor the process of targeted species trapping, from field to laboratory level is still scarce. Toward this end, we developed a new mobile app named “PesTrapp” to acquire the vector density index based on the mobile updates of ovitraps and species information in field and laboratory. This study aimed to highlight the mobile app’s development and design, elucidate the practical user experiences of using the app and evaluate the preliminary user assessment of the mobile app. The mobile app was developed using mobile framework and database. User evaluation of the mobile app was based on the adjusted Mobile App Rating Scale and Standardized User Experience Percentile Rank Questionnaire. The process flows of system design and detailed screen layouts were described. The user experiences with and without the app in a project to study Aedes surveillance in six study sites in Selangor, Malaysia were elucidated. The overall mean user evaluation score of the mobile app was 4.0 out of 5 (SD=0.6), reflects its acceptability of the users. The PesTrapp, a one-stop solution, is anticipated to improve the entomological surveillance work processes. This new mobile app can contribute as a tool in the vector control countermeasure strategies.
RESUMO
@#The continued absence of an effective and safe tetravalent dengue vaccine and the lack of specific anti-viral treatment have made mosquito vector control using chemical insecticides as the mainstream for dengue prevention and control. However, the long-term use of chemical insecticides may induce resistance. Hence detection of insecticide resistance in dengue vectors is crucially important in ensuring the insecticide-based intervention in dengue control program is still effective and reliable. In this study, the susceptibility status of Aedes aegypti from five selected dengue hotspots in Klang Valley, Malaysia against pyrethroids was determined by employing the World Health Organization (WHO) protocol of adult bioassay. Four types of pyrethroids were tested against adult female Aedes aegypti to determine the knockdown rate, post 24-h adult mortality and resistance ratio. All field-collected Aedes aegypti strains were resistant to the four pyrethroids tested, except for the Taman Sungai Jelok (TSJ) strain. Permethrin exhibited the lowest knockdown rate against Aedes aegypti, followed by deltamethrin, cyfluthrin and lambda-cyhalothrin. This present study indicated the widespread of pyrethroid resistance in Aedes aegypti in Klang Valley, indicating the needs of implementing alternative measures in vector control program. The data in this study can be utilised as an input for insecticide resistance management of Aedes aegypti in Malaysia.
RESUMO
@#The mechanism of insecticide resistance is traditionally attributed to detoxification enzymes, target site alteration, decreased penetration of insecticides and behavioural resistance. Other form of mechanisms, such as the role of protein(s) in resistance is unknown. In the present study, the protein profiling of both IMR-PSS strain (permethrin-selected) and IMR-LS strain (laboratory-susceptible) 24 hours post exposure period to permethrin was carried out via 1D-gel electrophoresis and liquid chromatography mass spectrometry (LC-MS/ MS). The bands which appeared in the gel of 1D-electrophoresis revealed an abundance of proteins. The band pattern of both strains looked macroscopically alike and differed only in band intensity. However, LC-MS/MS analysis revealed that the IMR-PSS strain produced extra 388 peptides that were not found in the IMR-LS strain, indicating that IMR-PSS strain reacted differently from IMR-LS strain as a result of persistent exposure to permethrin. Since the complex banding patterns of 1D-gel electrophoresis were difficult to interpret the significance of the protein difference between IMR-PSS and IMR-LS strain, hence LC-MS/MS analysis is ideally suited for better protein resolution and thus will allow more in-depth comparison of the complex pattern. The findings here provide the first preliminary evidence that insecticide resistance in mosquito induces up regulation of proteins that may be protective to mosquitoes against insecticide and proteins could be another mechanism that contributes to development of resistance.
RESUMO
@#In the practice of forensic entomology, the chronological age of the maggots retrieved from the cadaver is used to determine the minimum post-mortem interval (mPMI) i.e. minimum time of death. The conventional method of aging the maggots is based on measuring the growth rate of these maggots. Although effective, the constraint associated with conventional method necessitates the development of new age determination method, such as pteridine determination. Pteridine, a by-product of protein metabolism in insects is known to correlate with the age of a variety of dipterans. A number of studies were conducted on aging the adults of forensically important flies. In this study, pteridine was extracted from Chrysomya megacephala and Chrysomya rufifacies maggots of known age using established methods and determined by measuring the fluorescence at excitation of 330nm and the emissions between 350nm and 600nm. Results exhibited significant positive linear relationships between the pteridine accumulations and age of the fly immature. Pteridine determination is a potential new age determination tool that can be used to determine mPMI.
RESUMO
Dengue is a serious mosquito borne disease common in tropical and sub-tropical countries including Malaysia. There is at present a lack of specific treatment and an effective tetravalent vaccine against dengue. The control of dengue depends solely on the suppression of the two most important vectors namely, Aedes aegypti and Ae albopictus. Despite intensive and extensive control efforts by health agencies, the disease continues to spread. This paper updates various innovations on control of dengue vectors. Gene-based sterile insect technique using the RIDL technology for both Aedes aegypti & Ae albopictus control has now been actively researched and field trials are pursued to evaluate the effectiveness of the technology. The release of Wolbachia-infected Ae aegypti is another dengue control innovation. The infected mosquito cannot support development of dengue virus and has shorter life span. Other innovations include: auto-dissemination of insect control agents using ovitrap, autocidal adult and larva trap, outdoor residual spraying, insecticidal paint and biocontrol agent. In other innovation, outbreak prediction capability is enhanced by developing model based on environmental data and analysis utilising neural network.