Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clinical and Experimental Reproductive Medicine ; : 97-104, 2021.
Artigo em Inglês | WPRIM | ID: wpr-897619

RESUMO

Male infertility has a complex etiopathology, which mostly remains elusive. Although research has claimed that oxidative stress (OS) is the most likely underlying mechanism of idiopathic male infertility, the specific treatment of OS-mediated male infertility requires further investigation. Coenzyme Q10 (CoQ10), a vitamin-like substance, has been found in measurable levels in human semen. It exhibits essential metabolic and antioxidant functions, as well as playing a vital role in mitochondrial bioenergetics. Thus, CoQ10 may be a key player in the maintenance of biological redox balance. CoQ10 concentrations in seminal plasma directly correlate with semen parameters, especially sperm count and sperm motility. Seminal CoQ10 concentrations have been shown to be altered in various male infertility states, such as varicocele, asthenozoospermia, and medical or surgical regimens used to treat male infertility. These observations imply that CoQ10 plays an important physiological role in the maintenance and amelioration of semen quality. The present article thereby aimed to review the possible mechanisms through which CoQ10 plays a role in the regulation of male reproductive function, and to concisely discuss its efficacy as an ameliorative agent in restoring semen parameters in male infertility, as well as its impact on OS markers, sperm DNA fragmentation, pregnancy, and assisted reproductive technology outcomes.

2.
Clinical and Experimental Reproductive Medicine ; : 97-104, 2021.
Artigo em Inglês | WPRIM | ID: wpr-889915

RESUMO

Male infertility has a complex etiopathology, which mostly remains elusive. Although research has claimed that oxidative stress (OS) is the most likely underlying mechanism of idiopathic male infertility, the specific treatment of OS-mediated male infertility requires further investigation. Coenzyme Q10 (CoQ10), a vitamin-like substance, has been found in measurable levels in human semen. It exhibits essential metabolic and antioxidant functions, as well as playing a vital role in mitochondrial bioenergetics. Thus, CoQ10 may be a key player in the maintenance of biological redox balance. CoQ10 concentrations in seminal plasma directly correlate with semen parameters, especially sperm count and sperm motility. Seminal CoQ10 concentrations have been shown to be altered in various male infertility states, such as varicocele, asthenozoospermia, and medical or surgical regimens used to treat male infertility. These observations imply that CoQ10 plays an important physiological role in the maintenance and amelioration of semen quality. The present article thereby aimed to review the possible mechanisms through which CoQ10 plays a role in the regulation of male reproductive function, and to concisely discuss its efficacy as an ameliorative agent in restoring semen parameters in male infertility, as well as its impact on OS markers, sperm DNA fragmentation, pregnancy, and assisted reproductive technology outcomes.

3.
Asian Journal of Andrology ; (6): 24-29, 2021.
Artigo em Inglês | WPRIM | ID: wpr-879722

RESUMO

A large proportion of patients with idiopathic spermatogenic failure (SPGF; oligozoospermia or nonobstructive azoospermia [NOA]) do not receive a diagnosis despite an extensive diagnostic workup. Recent evidence has shown that the etiology remains undefined in up to 75% of these patients. A number of genes involved in germ-cell proliferation, spermatocyte meiotic divisions, and spermatid development have been called into play in the pathogenesis of idiopathic oligozoospermia or NOA. However, this evidence mainly comes from case reports. Therefore, this study was undertaken to identify the molecular causes of SPGF. To accomplish this, 15 genes (USP9Y, NR5A1, KLHL10, ZMYND15, PLK4, TEX15, TEX11, MEIOB, SOHLH1, HSF2, SYCP3, TAF4B, NANOS1, SYCE1, and RHOXF2) involved in idiopathic SPGF were simultaneously analyzed in a cohort of 25 patients with idiopathic oligozoospermia or NOA, accurately selected after a thorough diagnostic workup. After next-generation sequencing (NGS) analysis, we identified the presence of rare variants in the NR5A1 and TEX11 genes with a pathogenic role in 3/25 (12.0%) patients. Seventeen other different variants were identified, and among them, 13 have never been reported before. Eleven out of 17 variants were likely pathogenic and deserve functional or segregation studies. The genes most frequently mutated were MEIOB, followed by USP9Y, KLHL10, NR5A1, and SOHLH1. No alterations were found in the SYCP3, TAF4B, NANOS1, SYCE1, or RHOXF2 genes. In conclusion, NGS technology, by screening a specific custom-made panel of genes, could help increase the diagnostic rate in patients with idiopathic oligozoospermia or NOA.

4.
Asian Journal of Andrology ; (6): 309-316, 2020.
Artigo em Chinês | WPRIM | ID: wpr-842467

RESUMO

Follicle-stimulating hormone (FSH) represents a therapeutic option in normogonadotropic patients with idiopathic oligozoospermia. The aim of this review was to evaluate the possible dose- and drug-dependent efficacy of FSH treatment on conventional sperm parameters. We performed a comprehensive systematic review via a meta-analysis of all available randomized controlled trials, in which FSH administration was compared with placebo or no treatment when administered to normogonadotropic patients with idiopathic oligozoospermia. Of the 971 articles that were retrieved, 5 were finally included, including a total of 372 patients and 294 controls. Overall, FSH treatment was effective in ameliorating the sperm concentration, total count, progressive motility, but not normal forms. On the basis of the weekly dosage, the studies were classified into those using low (175-262.5 IU per week), intermediate (350-525 IU per week), and high (700-1050 IU per week) doses. At low doses, FSH improved only sperm motility. At intermediate doses, FSH ameliorated sperm concentration and morphology. Total sperm count and progressive motility showed a trend toward the increase. At high doses, FSH increased sperm concentration, total sperm count, and progressive motility. Sperm morphology showed a trend toward the increase. Finally, both highly purified FSH (hpFSH) and recombinant human FSH (rhFSH) improved sperm concentration, total sperm count, progressive motility, but not morphology. No different efficacy was observed between these two preparations. This meta-analysis provides evidence in favor of high FSH doses. The FSH efficacy was not related to the preparation type (recombinant vs highly purified). Further studies are needed to evaluate the effectiveness of long-standing treatment regimes.

5.
The World Journal of Men's Health ; : 257-260, 2019.
Artigo em Inglês | WPRIM | ID: wpr-761890

RESUMO

No abstract available.


Assuntos
Próstata , Glândula Tireoide
6.
The World Journal of Men's Health ; : 148-156, 2019.
Artigo em Inglês | WPRIM | ID: wpr-742363

RESUMO

During the last decades the study of male infertility and the introduction of the assisted reproductive techniques (ARTs) has allowed to understand that normal sperm parameters do not always predict fertilization. Sperm genetic components could play an important role in the early stages of embryonic development. Based on these acquisitions, several epigenetic investigations have been developed on spermatozoa, with the aim of understanding the multifactorial etiology of male infertility and of showing whether embryonic development may be influenced by sperm epigenetic abnormalities. This article reviews the possible epigenetic modifications of spermatozoa and their effects on male fertility, embryonic development and ART outcome. It focuses mainly on sperm DNA methylation, chromatin remodeling, histone modifications and RNAs.


Assuntos
Feminino , Humanos , Masculino , Gravidez , Montagem e Desmontagem da Cromatina , Metilação de DNA , Desenvolvimento Embrionário , Epigenômica , Fertilidade , Fertilização , Código das Histonas , Infertilidade , Infertilidade Masculina , Técnicas de Reprodução Assistida , RNA , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA