Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo em Chinês | WPRIM | ID: wpr-1045898

RESUMO

Obstructive sleep apnea (OSA) is a sleep disorder with a high incidence and severe impact on the human body, which can induce systemic chronic inflammatory responses. Chronic inflammation is an important cause of exacerbation of OSA and its associated complications. Nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) is an inflammasome that is widely found in epithelial cells and immune cells and plays an important role in inflammatory diseases as an important component of innate immunity. Research evidence suggests that the activation of NLRP3 inflammasomes can exacerbate the damage to neurons, endothelial cells, lung and kidney caused by OSA, and these effects can be eliminated by genetic or pharmacological deletion of NLRP3. Targeting inhibition of NLRP3 inflammasome may serve as a co-therapeutic strategy for OSA-induced related complications. This article reviews NLRP3 inflammasome and its mechanism in OSA-related concurrent diseases, which can provide scientific basis for prevention and intervention of OSA and its related complications.


Assuntos
Humanos , Inflamassomos , Células Endoteliais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamação , Apneia Obstrutiva do Sono , Nucleotídeos
2.
Artigo em Chinês | WPRIM | ID: wpr-1046221

RESUMO

Obstructive sleep apnea (OSA) is a sleep disorder with a high incidence and severe impact on the human body, which can induce systemic chronic inflammatory responses. Chronic inflammation is an important cause of exacerbation of OSA and its associated complications. Nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) is an inflammasome that is widely found in epithelial cells and immune cells and plays an important role in inflammatory diseases as an important component of innate immunity. Research evidence suggests that the activation of NLRP3 inflammasomes can exacerbate the damage to neurons, endothelial cells, lung and kidney caused by OSA, and these effects can be eliminated by genetic or pharmacological deletion of NLRP3. Targeting inhibition of NLRP3 inflammasome may serve as a co-therapeutic strategy for OSA-induced related complications. This article reviews NLRP3 inflammasome and its mechanism in OSA-related concurrent diseases, which can provide scientific basis for prevention and intervention of OSA and its related complications.


Assuntos
Humanos , Inflamassomos , Células Endoteliais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamação , Apneia Obstrutiva do Sono , Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA