Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Dental Rehabilitation and Applied Science ; : 71-79, 2017.
Artigo em Coreano | WPRIM | ID: wpr-80091

RESUMO

PURPOSE: Ni-Cr alloy does not contain Beryllium, causing the metal compound to form oxides in the furnace but by using Titanium as a chemical catalyst the forming of the oxides can be controlled, and by controlling the impurities formed on the metal surface, the possibility of the Ni-Cr alloy bond strength being increased can be analysed. MATERIALS AND METHODS: Titanium was used as a chemical catalyst in the porcelain for the oxidation of beryllium-free metal (Ni-Cr) alloy. The T1 group, which does not use Titanium power as a chemical catalyst is a reference model for comparison. The T2 group and T3 group used 10 g and 20 g of Titanium power, respectively. They are fabricated to observe the shear bond strength and surface properties. There was no significance when One-way ANOVA analysis/Tukey Honestly Significant Difference Test was conducted for statistical analysis among groups (P > 0.05). RESULTS: Results of measuring the three-point flexural bond strength of the Ni-Cr alloy and thickness of the oxide film. Experiment T3 using 20 g Titanium chemical catalyst: 39.22 ± 3.41 MPa and 6.66 µm, having the highest bond strength and thinness of oxide film. Experiment T2 using 10 g Titanium chemical catalyst: 34.65 ± 1.39 MPa and 13.22 µm. Experiment T1 using no Titanium chemical catalyst: 32.37 ± 1.91 MPa and 22.22 µm. CONCLUSION: The T2 and T3 experiments using Titanium chemical catalyst showed higher bond strength for the Ni-Cr alloy and lower thickness of oxide film than experiment T1, and the titanium catalyst being able to increase bond strength was observed.


Assuntos
Ligas , Berílio , Porcelana Dentária , Temperatura Alta , Óxidos , Propriedades de Superfície , Magreza , Titânio
2.
The Journal of Advanced Prosthodontics ; : 199-206, 2015.
Artigo em Inglês | WPRIM | ID: wpr-194329

RESUMO

PURPOSE: The present study investigated the influences of various gypsum materials on the precision of fit of CAD/CAM-fabricated prostheses and analyzed their correlation with surface roughness. MATERIALS AND METHODS: The master model of the mandibular right first molar was replicated, and four experimental groups based on two types of Type IV stone (GC Fujirock EP, Die keen) and two types of scannable stone (Aesthetic-Basegold, Everest Rock) were created to include a total of 40 specimens, 10 in each group. The surface roughness of the working models for the respective experimental groups was measured. Once the zirconia cores had been fabricated, the marginal and internal fits were measured with a digital microscope using the silicone replica technique. The mean and standard deviation of the respective points of measurement were computed and analyzed through the one-way ANOVA and Tukey's HSD test. The correlation between surface roughness and the precision of fit of the zirconia core was analyzed using the Pearson correlation analysis (alpha=.05). RESULTS: The zirconia cores fabricated from the scannable stone working models exhibited a superior precision of fit as compared to those fabricated from the Type IV stone working models. The correlation analysis results showed a clear positive correlation between surface roughness and the precision of fit of zirconia cores in all of the experimental groups (P<.05). CONCLUSION: The results confirmed that the surface roughness of dental working models has a decisive influence on the precision of fit of zirconia cores.


Assuntos
Sulfato de Cálcio , Dente Molar , Próteses e Implantes , Técnicas de Réplica , Silicones
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA