Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Orinoquia ; 24(1): 23-31, ene.-jun. 2020. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1115053

RESUMO

Abstract Nostoc is a genus of filamentous cyanobacteria with biotechnological applications in human nutrition, biomedicine, biofertilization and commercial production of biofuels. However, the low growth rate in liquid medium due to its periphytic nature and its tendency to form biofilms, limits its large-scale production. Therefore, the aim of this study was to evaluate the biomass production of Nostoc muscorum in a modified hydroponic system. Cultures of N. muscorum were made by triplicate, in a hydroponic system under semicontrolled conditions of temperature (29 ± 13 °C), light intensity (32 ± 54 µmol/m2/s) and photoperiod (12 hours), for a total of 23 days inside a greenhouse. Temperature, pH, conductivity and dry biomass production were monitored on alternating days. The results showed that the maximum dry biomass production was 0.2276 ± 0.0114 g/m2/day, and the average productivity was 0.4149 ± 0.0207 g/m2/day. The maximum biomass production of N. muscorum was achieved on day thirteen with 0.3185 ± 0.0159 g/m2/day. The correlation statistical analysis of environmental variables did not show significant differences; thus, temperature, pH and electrical conductivity did not affect the biomass production of N. muscorum. Consequently, the algal growth was influenced by the species physiology only. The support used in the hydroponic system allowed the adhesion and development of the algae mucilaginous layer without requiring drying periods as in conventional crops. The hydroponic system provided a continuous flow of nutrients hat could prevent the attack of opportunistic bacteria and fungi, generating a high growth rate of N. muscorum. The hydroponic system represents a viable alternative for the production of N. muscorum biomass under greenhouse conditions at large scale.


Resumen Nostoc es un género de cianobacterias filamentosas con aplicaciones biotecnológicas en nutrición humana, biomedicina, biofertilización y producción comercial de biocombustibles. Sin embargo, su baja tasa de crecimiento en medio líquido por su naturaleza perifítica y su tendencia a formar biofilms, limita su producción a gran escala. Por lo tanto, el objetivo de este estudio fue analizar la producción de biomasa de Nostoc muscorum en un sistema hidropónico modificado. Para ello, se realizaron cultivos de N. muscorum por triplicado, en un sistema hidropónico bajo condiciones semicontroladas de temperatura (29 ± 13°C), intensidad lumínica (32 ± 54 µmol/m2/s) y fotoperiodo (12 horas), durante 23 días en un invernadero. La temperatura, el pH, la conductividad eléctrica y la producción de biomasa seca, fueron monitoreados en días alternados. Los resultados arrojaron que la producción máxima de biomasa seca fue de 0.2276 ± 0.0114 g/m2/día, y la productividad promedio fue de 0.4149 ± 0.0207 g/m2/día. A su vez, la producción máxima de biomasa de N. muscorum se obtuvo el día trece con 0.3185 ± 0.0159 g/m2/día. El análisis estadístico de correlación de variables ambientales no arrojó diferencias significativas, por lo que la temperatura, el pH y la conductividad eléctrica no afectaron la producción de biomasa de N. muscorum. Consecuentemente, el crecimiento algal fue influenciado por la fisiología de la especie. El soporte empleado en el sistema hidropónico permitió la adherencia y el desarrollo de la capa mucilaginosa de la cianobacteria sin requerir períodos de desecación como en los cultivos convencionales. El sistema hidropónico proporcionó un flujo continuo de nutrientes que podría prevenir el ataque de bacterias y hongos oportunistas, generando una alta tasa de crecimiento. De este modo, este sistema hidropónico representa una alternativa viable para la producción de biomasa de N. muscorum en condiciones de invernadero a gran escala.


Resumo Nostoc é um gênero de cianobactérias filamentosas com aplicações biotecnológicas em nutrição humana, biomedicina, biofertilização e produção comercial de biocombustíveis. Entretanto, sua baixa taxa de crescimento em meio líquido, devido à sua natureza perifítica e sua tendência a formar biofilmes, limita sua produção em larga escala. Portanto, o objetivo deste estudo foi analisar a produção de biomassa de Nostoc muscorum num sistema hidropônico modificado. Para isso, foram realizadas culturas de N. muscorum em triplicata num sistema hidropônico sob temperatura (29 ± 13°C) e intensidade da luz (32 ± 54 µmol/m2 /s) semicontroladas com fotoperíodo de 12 horas durante 23 dias numa estufa. A temperatura, o pH, a condutividade elétrica e a biomassa seca foram monitorados em dias alternados. Os resultados mostraram que a produção máxima de biomassa seca foi de 0,2276 ± 0,0114 g/m2 /dia e a produtividade média foi de 0,4149 ± 0,0207 g/ m2 /dia. No entanto, a produção máxima de biomassa de N. muscorum foi obtida no dia treze com 0,3185 ± 0,0159 g/m / dia. A análise estatística da correlação de variáveis ambientais não mostrou nenhuma diferença significativa, de modo que a temperatura, o pH e a condutividade eléctrica não afetaram a produção de biomassa de N. muscorum e o crescimento foi influenciado pela fisiologia da espécie. O suporte utilizado permitiu a adesão e desenvolvimento da camada mucilaginosa das algas sem a necessidade de períodos de secagem como nas culturas convencionais. O sistema hidropônico proporcionou um fluxo contínuo de nutrientes que impede o ataque de bactérias e fungos oportunistas, gerando uma alta taxa de crescimento. Portanto, este sistema hidropônico representa uma alternativa viável para a produção de biomassa de N. muscorum em larga escala sob condições de estufa.

2.
Orinoquia ; 23(2): 71-78, jul.-dic. 2019.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1115042

RESUMO

Resumen Las microalgas son organismos fotoautótrofos con un rápido crecimiento y la habilidad de adaptarse a diversos ambientes. Convierten el dióxido de carbono en biomasa y debido a esto, se considera que tienen gran potencial biotecnológico. La biomasa algal puede usarse en la industria alimenticia y de compuestos bioactivos, en la producción de biocombustibles, en la bioremediación y biofertilización. Como biofertilizantes, las microalgas clorofitas y cianofitas, producen polisacáridos (mucílago) que pueden evitar la erosión, mejorar la estructura y el contenido de material orgánica de los suelos, y aumentar la concentración de iones en los cultivos. Reduciendo de esta forma la necesidad de fertilizantes químicos convencionales. El uso de estas microalgas como biofertilizantes se denomina algalización. Durante este proceso se usan principalmente clorofitas por su alta tasa de crecimiento, la facilidad de su cultivo a gran escala, y su adaptación a las condiciones del suelo. El género Chlorella es de gran interés porque diversos estudios han mostrado que puede ayudar en la fijación del nitrógeno, mejorar las propiedades físicas y químicas del suelo, y producir sustancias que promueven el desarrollo de la planta y el control de infecciones. Por esta razón, las microalgas del género Chlorella representan una alternativa viable para la biofertilización, generando beneficios no solo para la producción agrícola sino también para el medio ambiente.


Abstract Microalgae are photoautotrophic organisms with fast growth and the ability to adapt to different environments. They convert carbon dioxide into biomass and are considered to have great biotechnological potential because of it. Algal biomass can be used in food and bioactive compounds industry, in biofuels production, in bioremediation and biofertilization. As biofertilizers, chlorophytes and cyanophytes microalgae produce polysaccharides (mucilage) that can avoid erosion, improve the structure and organic matter content in the soil, and increase the ions concentration for crop plants. Thus, reducing the need for conventional crop chemical fertilizers. The use of this microalgae as biofertilizers is called algalization. Algalization uses mainly chlorophytes due to their high growth rate, their simple large scale cultivation, and their adaptation to soil conditions. Chlorella genus is of special interest because research has shown that it can help with nitrogen fixation, improve physical and chemical properties of the soil, and produce substances that can promote plant development and infections control. Therefore, microalgae from Chlorella genus are a viable alternative for biofertilization, generating benefits for agricultural production and the environment.


Resumo As microalgas são organismos fotoautotróficos com crescimento rápido e capacidade de adaptação a diferentes ambientes. Eles convertem dióxido de carbono em biomassa e, por isso, são considerados com um grande potencial biotecnológico. A biomassa de algas pode ser usada na indústria alimentar e de compostos bioactivos, na produção de biocombustíveis, na biorremediação e biofertilização. Como biofertilizantes, as microalgas clorófitas e cianófitas produzem polissacarídeos (mucilagem) que podem evitar a erosão, melhorar a estrutura e o conteúdo de matéria orgânica do solo, e aumentar a concentração de iões nas culturas, reduzindo assim a necessidade de fertilizantes químicos convencionais. O uso dessas microalgas como biofertilizantes é chamado de algalização. Durante este processo, usam-se eles ​​principalmente clorofíceas por sua alta taxa de crescimento, facilidade de cultura em larga escala, e sua adaptação às condições do solo. A Chlorella é de grande interesse porque vários estudos têm mostrado que pode auxiliar na fixação do nitrogênio, melhorar as propriedades físicas e químicas do solo, e produzir substâncias que promovem o crescimento das plantas e o controle de infecções. Por esta razão, as microalgas do gênero Chlorella representam uma alternativa viável para a biofertilização, gerando benefícios não só para a produção agrícola, mas também para o meio ambiente.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA