Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. med. biol. res ; 52(7): e8429, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1011597

RESUMO

The present study aimed to analyze age-related changes to motor coordination, balance, spinal cord oxidative biomarkers in 3-, 6-, 18-, 24-, and 30-month-old rats. The effects of low-intensity exercise on these parameters were also analyzed in 6-, 18-, and 24-month-old rats. Body weight, blood glucose, total cholesterol, and high-density lipoprotein (HDL) cholesterol were assessed for all rats. The soleus muscle weight/body weight ratio was used to estimate skeletal muscle mass loss. Body weight increased until 24 months; only 30-month-old rats exhibited decreased blood glucose and increased total cholesterol and HDL cholesterol. The soleus muscle weight/body weight ratio increased until 18 months, followed by a small decrease in old rats. Exercise did not change any of these parameters. Stride length and step length increased from adult to middle age, but decreased at old age. Stride width increased while the sciatic functional index decreased in old rats. Performance in the balance beam test declined with age. While gait did not change, balance improved after exercise. Aging increased superoxide anion generation, hydrogen peroxide levels, total antioxidant capacity, and superoxide dismutase activity while total thiol decreased and lipid hydroperoxides did not change. Exercise did not significantly change this scenario. Thus, aging increased oxidative stress in the spinal cord, which may be associated with age-induced changes in gait and balance. Regular low-intensity exercise is a good alternative for improving age-induced changes in balance, while beneficial effects on gait and spinal cord oxidative biomarkers cannot be ruled out because of the small number of rats investigated (n=5 or 6/group).


Assuntos
Animais , Masculino , Ratos , Condicionamento Físico Animal/fisiologia , Biomarcadores/sangue , Fatores Etários , Estresse Oxidativo/fisiologia , Equilíbrio Postural/fisiologia , Marcha/fisiologia , Medula Espinal/fisiologia , Medula Espinal/metabolismo , Glicemia/análise , Peso Corporal/fisiologia , Biomarcadores/metabolismo , Colesterol/sangue , Ratos Wistar , Lipoproteínas HDL/sangue
2.
Braz. j. med. biol. res ; 51(4): e7097, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-889063

RESUMO

Vitamin E (vit. E) and vitamin C (vit. C) are antioxidants that inhibit nociception. The effect of these vitamins on oxidative-stress markers in the spinal cord of rats with chronic constriction injury (CCI) of the sciatic nerve is unknown. This study investigated the effect of intraperitoneal administration of vit. E (15 mg·kg-1·day-1) and vit. C (30 mg·kg-1·day-1), given alone or in combination, on spinal cord oxidative-stress markers in CCI rats. Adult male Wistar rats weighing 200-250 g were divided equally into the following groups: Naive (rats did not undergo surgical manipulation); Sham (rats in which all surgical procedures involved in CCI were used except the ligature), and CCI (rats in which four ligatures were tied loosely around the right common sciatic nerve), which received injections of vitamins or vehicle (saline containing 1% Tween 80) for 3 or 10 days (n=6/each group). The vitamins prevented the reduction in total thiol content and the increase in superoxide-anion generation that were found in vehicle-treated CCI rats. While nitric-oxide metabolites increased in vehicle-treated CCI rats 3 days after surgery, these metabolites did not show significant changes in vitamin-treated CCI rats. In all rats, total antioxidant capacity and hydrogen-peroxide levels did not change significantly. Lipid hydroperoxides increased 25% only in vehicle-treated CCI rats. These changes may contribute to vit. C- and vit. E-induced antinociception, because scavenging reactive oxygen species seems to help normalize the spinal cord oxidative status altered by pain.


Assuntos
Animais , Masculino , Ratos , alfa-Tocoferol/uso terapêutico , Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Neuropatia Ciática/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Biomarcadores/metabolismo , Modelos Animais de Doenças , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Ratos Wistar , Neuropatia Ciática/metabolismo , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA