Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Nutrition Research and Practice ; : 396-401, 2017.
Artigo em Inglês | WPRIM | ID: wpr-51183

RESUMO

BACKGROUND/OBJECTIVES: In this randomized, placebo-controlled, double-blind study, we evaluated the antihypertensive effects of enzymatic hydrolysate from Styela clava flesh tissue in patients with type 2 diabetes mellitus (T2DM) and hypertension. SUBJECTS/METHODS: S. clava flesh tissue hydrolysate (SFTH) (n = 34) and placebo (n = 22) were randomly allocated to the study subjects. Each subject ingested two test capsules (500 mg) containing powdered SFTH (SFTH group) or placebo capsules (placebo group) during four weeks. RESULTS: In the SFTH group, systolic and diastolic blood pressure decreased significantly 4 weeks after ingestion by 9.9 mmHg (P < 0.01) and 7.8 mmHg (P < 0.01), respectively. In addition, the SFTH group exhibited a significant decrease in hemoglobin A1c with a tendency toward improvement in homeostasis model assessment of insulin resistance, triglyceride, apolipoprotein B and plasma insulin levels after 4 weeks. No adverse effects were observed in other indexes, including biochemical and hematological parameters in both groups. CONCLUSION: The results of our study suggested that SFTH exerts a regulatory, antihypertensive effect in patients with T2DM and hypertension.


Assuntos
Humanos , Anti-Hipertensivos , Apolipoproteínas , Organismos Aquáticos , Pressão Sanguínea , Cápsulas , Diabetes Mellitus Tipo 2 , Método Duplo-Cego , Ingestão de Alimentos , Homeostase , Hipertensão , Insulina , Resistência à Insulina , Plasma , Hidrolisados de Proteína , Triglicerídeos
2.
Nutrition Research and Practice ; : 219-226, 2015.
Artigo em Inglês | WPRIM | ID: wpr-72727

RESUMO

BACKGROUND/OBJECTIVES: In this study, potential anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue was assessed via nitric oxide (NO) production in lipopolysaccahride (LPS) induced RAW 264.7 macrophages and in vivo zebrafish model. MATERIALS/METHODS: We investigated the ability of enzymatic hydrolysates from Styela clava flesh tissue to inhibit LPS-induced expression of pro-inflammatory mediators in RAW 264.7 macrophages, and the molecular mechanism through which this inhibition occurred. In addition, we evaluated anti-inflammatory effect of enzymatic hydrolysates against a LPS-exposed in in vivo zebrafish model. RESULTS: Among the enzymatic hydrolysates, Protamex-proteolytic hydrolysate exhibited the highest NO inhibitory effect and was fractionated into three ranges of molecular weight by using ultrafiltration (UF) membranes (MWCO 5 kDa and 10 kDa). The above 10 kDa fraction down-regulated LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), thereby reducing production of NO and prostaglandin E2 (PGE2) in LPS-activated RAW 264.7 macrophages. The above 10 kDa fraction suppressed LPS-induced production of pro-inflammatory cytokines, including interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha. In addition, the above 10 kDa fraction inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. Furthermore, NO production in live zebrafish induced by LPS was reduced by addition of the above 10 kDa fraction from S. clava enzymatic hydrolysate. CONCLUSION: The results of this study suggested that hydrolysates derived from S. clava flesh tissue would be new anti-inflammation materials in functional resources.


Assuntos
Ciclo-Oxigenase 2 , Citocinas , Dinoprostona , MAP Quinases Reguladas por Sinal Extracelular , Interleucina-6 , Interleucinas , Proteínas Quinases JNK Ativadas por Mitógeno , Macrófagos , Membranas , Peso Molecular , Óxido Nítrico , Óxido Nítrico Sintase Tipo II , Fosforilação , Fator de Necrose Tumoral alfa , Ultrafiltração , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA