Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Tissue Engineering and Regenerative Medicine ; (6): 389-409, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1003159

RESUMO

Various immune cells participate in repair and regeneration following tissue injury or damage, orchestrating tissue inflammation and regeneration processes. A deeper understanding of the immune system’s involvement in tissue repair and regeneration is critical for the development of successful reparatory and regenerative strategies. Here we review recent technologies that facilitate cell-based and biomaterial-based modulation of the immune systems for tissue repair and regeneration. First, we summarize the roles of various types of immune cells in tissue repair. Second, we review the principle, examples, and limitations of regulatory T (Treg) cell-based therapy, a representative cell-based immunotherapy.Finally, we discuss biomaterial-based immunotherapy strategies that aim to modulate immune cells using various biomaterials for tissue repair and regeneration.

2.
Tissue Engineering and Regenerative Medicine ; (6): 841-850, 2021.
Artigo em Inglês | WPRIM | ID: wpr-896412

RESUMO

BACKGROUND@#Ferroptosis is an iron-dependent, non-apoptotic programmed cell death. Cellular senescence contributes to aging and various age-related diseases through the expression of a senescence-associated secretory phenotype (SASP). Senescent cells are often resistant to ferroptosis via increased ferritin and impaired ferritinophagy. In this study, we investigated whether treatment with JQ1 could remove senescent cells by inducing ferroptosis. @*METHODS@#Senescence of human dermal fibroblasts was induced in vitro by treating the cells with bleomycin. The senolytic effects of JQ1 were evaluated using a SA-β gal assay, annexin V analysis, cell counting kit-8 assay, and qRT-PCR. Ferroptosis following JQ1 treatment was evaluated with qRT-PCR and BODIPY staining. @*RESULTS@#At a certain range of JQ1 concentrations, JQ1 treatment reduced the viability of bleomycin-treated cells (senescent cells) but did not reduce that of untreated cells (non-senescent cells), indicating that JQ1 treatment can selectively eliminate senescent cells. JQ1 treatment also decreased SASP expression only in senescent cells. Subsequently, JQ1 treatment reduced the expression of ferroptosis-resistance genes in senescent cells. JQ1 treatment induced lipid peroxidation in senescent cells but not in non-senescent cells. @*CONCLUSION@#The data indicate that JQ1 can eliminate senescent cells via ferroptosis. This study suggests ferroptosis as a new mechanism of senolytic therapy.

3.
Tissue Engineering and Regenerative Medicine ; (6): 841-850, 2021.
Artigo em Inglês | WPRIM | ID: wpr-904116

RESUMO

BACKGROUND@#Ferroptosis is an iron-dependent, non-apoptotic programmed cell death. Cellular senescence contributes to aging and various age-related diseases through the expression of a senescence-associated secretory phenotype (SASP). Senescent cells are often resistant to ferroptosis via increased ferritin and impaired ferritinophagy. In this study, we investigated whether treatment with JQ1 could remove senescent cells by inducing ferroptosis. @*METHODS@#Senescence of human dermal fibroblasts was induced in vitro by treating the cells with bleomycin. The senolytic effects of JQ1 were evaluated using a SA-β gal assay, annexin V analysis, cell counting kit-8 assay, and qRT-PCR. Ferroptosis following JQ1 treatment was evaluated with qRT-PCR and BODIPY staining. @*RESULTS@#At a certain range of JQ1 concentrations, JQ1 treatment reduced the viability of bleomycin-treated cells (senescent cells) but did not reduce that of untreated cells (non-senescent cells), indicating that JQ1 treatment can selectively eliminate senescent cells. JQ1 treatment also decreased SASP expression only in senescent cells. Subsequently, JQ1 treatment reduced the expression of ferroptosis-resistance genes in senescent cells. JQ1 treatment induced lipid peroxidation in senescent cells but not in non-senescent cells. @*CONCLUSION@#The data indicate that JQ1 can eliminate senescent cells via ferroptosis. This study suggests ferroptosis as a new mechanism of senolytic therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA