Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Experimental & Molecular Medicine ; : 230-238, 2007.
Artigo em Inglês | WPRIM | ID: wpr-90609

RESUMO

Colchicine has been shown to regulate the expression of inflammatory gene, but this compound possesses much weaker anti-inflammatory activity. In this study, we synthesized a new colchicine derivative CT20126 and examined its immunomodulatory property. CT20126 was found to have immunosuppressive effects by inhibiting lymphocyte proliferation without cytotoxicity and effectively inhibit the transcriptional expression of the inflammatory genes, iNOS, TNF-alpha, and IL-1beta, in macrophages stimulated by LPS. This effect was nearly comparable to that of cyclosporine A. This compound also significantly suppressed the production of nitric oxide and Th1-related pro-inflammatory cytokines, IL-1beta, TNF-alpha, and IL-2, with minimal suppression of Th2-related anti-inflammatory cytokines IL-4 and IL-10 in the sponge matrix allograft model. Moreover, administration of CT20126 prolonged the survival of allograft skins from BALB/c mice (H-2d) to the dorsum of C57BL/6 (H-2b) mice. The in vivo immune suppressive effects of CT20126 were similar to that of cyclosporine A. These results indicate that this compound may have potential therapeutic value for transplantation rejection and other inflammatory diseases.


Assuntos
Animais , Feminino , Camundongos , Linhagem Celular , Colchicina/análogos & derivados , Citocinas/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Sobrevivência de Enxerto/efeitos dos fármacos , Terapia de Imunossupressão , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Teste de Cultura Mista de Linfócitos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Transplante de Pele/imunologia , Células Th1/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Transplante Homólogo , Fator de Necrose Tumoral alfa/genética
2.
Experimental & Molecular Medicine ; : 323-334, 2005.
Artigo em Inglês | WPRIM | ID: wpr-177639

RESUMO

beta-Carotene has shown antioxidant and antiinflammatory activities; however, its molecular mechanism has not been clearly defined. We examined in vitro and in vivo regulatory function of beta-carotene on the production of nitric oxide (NO) and PGE2 as well as expression of inducible NO synthase (iNOS), cyclooxygenase-2, TNF-alpha, and IL-1beta. beta-Carotene inhibited the expression and production of these inflammatory mediators in both LPSstimulated RAW264.7 cells and primary macrophages in a dose-dependent fashion as well as in LPS-administrated mice. Furthermore, this compound suppressed NF-kappaB activation and iNOS promoter activity in RAW264.7 cells stimulated with LPS. beta-Carotene blocked nuclear translocation of NF-kappaB p65 subunit, which correlated with its inhibitory effect on IkappaBalpha phosphorylation and degradation. This compound directly blocked the intracellular accumulation of reactive oxygen species in RAW264.7 cells stimulated with LPS as both the NADPH oxidase inhibitor diphenylene iodonium and antioxidant pyrrolidine dithiocarbamate did. The inhibition of NADPH oxidase also inhibited NO production, iNOS expression, and iNOS promoter activity. These results suggest that beta-carotene possesses anti-inflammatory activity by functioning as a potential inhibitor for redox-based NF-kappaB activation, probably due to its antioxidant activity.


Assuntos
Animais , Feminino , Camundongos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Dinoprostona/metabolismo , Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , NF-kappa B/antagonistas & inibidores , Óxido Nítrico/metabolismo , Oxirredução , beta Caroteno/farmacologia
3.
Experimental & Molecular Medicine ; : 588-600, 2005.
Artigo em Inglês | WPRIM | ID: wpr-191492

RESUMO

Prostaglandin E2(PGE2), a major product of cyclooxygenase, has been implicated in modulating angiogenesis, vascular function, and inflammatory processes, but the underlying mechanism is not clearly elucidated. We here investigated the molecular mechanism by which PGE 2 regulates angiogenesis. Treatment of human umbilical vein endothelial cells (HUVEC) with PGE 2 increased angiogenesis. PGE 2 increased phosphorylation of Akt and endothelial nitric oxide synthase (eNOS), eNOS activity, and nitric oxide (NO) production by the activation of cAMP-dependent protein kinase (PKA) and phosphatidylinositol 3-kinase (PI3K). Dibutyryl cAMP (DB-cAMP) mimicked the role of PGE 2 in angiogenesis and the signaling pathway, suggesting that cAMP is a down-stream mediator of PGE 2. Furthermore, PGE 2 increased endothelial cell sprouting from normal murine aortic segments, but not from eNOS-deficient ones, on Matrigel. The angiogenic effects of PGE 2 were inhibited by the inhibitors of PKA, PI3K, eNOS, and soluble guanylate cyclase, but not by phospholipase C inhibitor. These results clearly show that PGE 2 increased angiogenesis by activating the NO/cGMP signaling pathway through PKA/PI3K/Akt-dependent increase in eNOS activity.


Assuntos
Animais , Humanos , Camundongos , Ratos , Fosfatidilinositol 3-Quinase/antagonistas & inibidores , Aorta , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , GMP Cíclico/biossíntese , Dinoprostona/farmacologia , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Camundongos Knockout , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/deficiência , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Veias Umbilicais/citologia
4.
Experimental & Molecular Medicine ; : 311-324, 2004.
Artigo em Inglês | WPRIM | ID: wpr-198863

RESUMO

The expression of inducible nitric oxide synthase (iNOS) is a critical factor in both normal physiological functions and the pathogenesis of disease. This study was undertaken to determine the molecular mechanism by which nitric oxide (NO) exerts negative feedback regulation on iNOS gene expression. Isolated rat hepatocytes stimulated with cytokines exhibited a marked increase in NO production as well as iNOS mRNA and protein levels, which were significantly reduced by pretreatment of the NO donors S-nitroso-N-acetyl-D, L-penicillamine (SNAP) and V-PYRRO/NO. This effect of SNAP was inhibited when NO was scavenged using red blood cells. Pretreatment with oxidized SNAP, 8-Br-cGMP, NO2-, or NO3- did not suppress the cytokine-induced NO production. Moreover, LPS/ IFN-gamma-stimulated RAW264.7 cells, which produce endogenous NO, expressed lower levels of iNOS, IL-1beta, IL-6 and TNF-alpha mRNAs, without changes in their mRNA half-lives, than those in the presence of the iNOS inhibitor NG-monomethyl- L-arginine. The iNOS gene transcription rate exhibited an 18-fold increase after cytokine stimulation, which was significantly inhibited by SNAP pretreatment. SNAP also blocked cytokine- induced increase in NF-kappa B activation, iNOS promoter activity, nuclear translocation of cytosolic NF-kappa B p65 subunit, and I kappa B alpha degradation, which correlated with its inhibitory effect on phosphorylation and ubiquitination of I kappa B. These data indicate that NO down-regulates iNOS gene expression and NO production by inhibiting the post-translational processes of I kappa B alpha thereby preventing NF-kappa B activation. These results identify a novel negative feedback mechanism whereby NO down-regulates iNOS gene expression.


Assuntos
Animais , Ratos , Linhagem Celular , Núcleo Celular/metabolismo , GMP Cíclico/análogos & derivados , Citocinas/genética , Regulação para Baixo , Hepatócitos/metabolismo , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase/biossíntese , Penicilamina/análogos & derivados , Fosforilação , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA