Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Korean Journal of Dental Materials ; (4): 235-244, 2020.
Artigo em Inglês | WPRIM | ID: wpr-901889

RESUMO

We evaluated the antibacterial, anti-inflammatory, and inhibitory effect of osteoclast differentiation of Brachypodium sylvaticum (BS) to find out the possibility of preventing periodontal disease. The inhibition of Porphyromonas gingivalis (P. gingivalis) growth by BS and the sustainability of the antibacterial activity was assessed. The production of pro-inflammatory cytokines from lipopolysaccharide (LPS)-induced RAW 264.7 cells were measured using enzyme-linked immunosorbent assays (ELISA), and the production of nitric oxide (NO) and cell viability were measured. Osteoclast differentiation was evaluated by Tartrate-resistant acid phosphatase (TRAP) staining, and TRAP activity. BS showed significant antibacterial activity and sustainable antibacterial activity in P. gingivalis. We also found out that the BS significantly decreased secretion of pro-inflammatory cytokines [tumor necrosis factor (TNF-α) and interleukin-6 (IL-6)] and NO production without cytotoxicity. Furthermore, BS inhibited the differentiation of bone marrow macrophages (BMMs) obtained from mouse bone marrow cells into osteoclasts without cytotoxicity. Taken together, BS can be a promising candidate for a preventive and improving agent of periodontal disease having antibacterial, anti-inflammatory, and inhibitory effects of osteoclast differentiation.

2.
Korean Journal of Dental Materials ; (4): 235-244, 2020.
Artigo em Inglês | WPRIM | ID: wpr-894185

RESUMO

We evaluated the antibacterial, anti-inflammatory, and inhibitory effect of osteoclast differentiation of Brachypodium sylvaticum (BS) to find out the possibility of preventing periodontal disease. The inhibition of Porphyromonas gingivalis (P. gingivalis) growth by BS and the sustainability of the antibacterial activity was assessed. The production of pro-inflammatory cytokines from lipopolysaccharide (LPS)-induced RAW 264.7 cells were measured using enzyme-linked immunosorbent assays (ELISA), and the production of nitric oxide (NO) and cell viability were measured. Osteoclast differentiation was evaluated by Tartrate-resistant acid phosphatase (TRAP) staining, and TRAP activity. BS showed significant antibacterial activity and sustainable antibacterial activity in P. gingivalis. We also found out that the BS significantly decreased secretion of pro-inflammatory cytokines [tumor necrosis factor (TNF-α) and interleukin-6 (IL-6)] and NO production without cytotoxicity. Furthermore, BS inhibited the differentiation of bone marrow macrophages (BMMs) obtained from mouse bone marrow cells into osteoclasts without cytotoxicity. Taken together, BS can be a promising candidate for a preventive and improving agent of periodontal disease having antibacterial, anti-inflammatory, and inhibitory effects of osteoclast differentiation.

3.
Biomolecules & Therapeutics ; : 282-291, 2020.
Artigo | WPRIM | ID: wpr-830945

RESUMO

Inhaled solvents such as toluene are of particular concern due to their abuse potential that is easily exposed to the environment. The inhalation of toluene causes various behavioral problems, but, the effect of short-term exposure of toluene on changes in emotional behaviors over time after exposure and the accompanying pathological characteristics have not been fully identified. Here, we evaluated the behavioral and neurochemical changes observed over time in mice that inhaled toluene. The mice were exposed to toluene for 30 min at a concentration of either 500 or 2,000 ppm. Toluene did not cause social or motor dysfunction in mice. However, increased anxiety-like behavior was detected in the short-term after exposure, and depression-like behavior appeared as delayed effects. The amount of striatal dopamine metabolites was significantly decreased by toluene, which continued to be seen for up to almost two weeks after inhalation. Additionally, an upregulation of serotonin 1A (5-HT1A) receptor in the hippocampus and the substantia nigra, as well as reduced immunoreactivity of neurogenesis markers in the dentate gyrus, was observed in the mice after two weeks. These results suggest that toluene inhalation, even single exposure, mimics early anxietyand delayed depression-like emotional disturbances, underpinned by pathological changes in the brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA