Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Yonsei Medical Journal ; : 652-661, 2018.
Artigo em Inglês | WPRIM | ID: wpr-715897

RESUMO

PURPOSE: We developed a new workflow design which included results from both biochemical and targeted gene sequencing analysis interpreted comprehensively. We then conducted a pilot study to evaluate the benefit of this new approach in newborn screening (NBS) and demonstrated the efficiency of this workflow in detecting causative genetic variants. MATERIALS AND METHODS: Ten patients in Group 1 were diagnosed clinically using biochemical assays only, and 10 newborns in Group 2 were diagnosed with suspected inherited metabolic disease (IMD) in NBS. We applied NewbornDiscovery (SD Genomics), an integrated workflow design that encompasses analyte-phenotype-gene, single nucleotide variant/small insertion and deletion/copy number variation analyses along with clinical interpretation of genetic variants related to each participant's condition. RESULTS: A molecular genetic diagnosis was established in 95% (19/20) of individuals. In Group 1, 13 and 7 of 20 alleles were classified as pathogenic and likely pathogenic, respectively. In Group 2, 11 and 6 of 17 alleles with identified causative variants were pathogenic and likely pathogenic, respectively. There were no variants of uncertain significance. For each individual, the NewbornDiscovery and biochemical analysis results reached 100% concordance, since the single newborn testing negative for causative genetic variant in Group 2 showed a benign clinical course. CONCLUSION: This integrated diagnostic workflow resulted in a high yield. This approach not only enabled early confirmation of specific IMD, but also detected conditions not included in the current NBS.


Assuntos
Humanos , Recém-Nascido , Alelos , Diagnóstico , Diagnóstico Diferencial , Programas de Rastreamento , Doenças Metabólicas , Biologia Molecular , Projetos Piloto
2.
Genomics & Informatics ; : 38-40, 2009.
Artigo em Inglês | WPRIM | ID: wpr-76621

RESUMO

The EST Knowledge Integrated System, EKIS (http://ekis.kribb.re.kr), was established as a part of Korea's Ministry of Education, Science and Technology initiative for genome sequencing and application research of the biological model organisms (GEAR) project. The goals of the EKIS are to collect EST information from GEAR projects and make an integrated database to provide transcriptomic and metabolomic information for biological scientists. The EKIS constitutes five independent categories and several retrieval systems in each category for incorporating massive EST data from high-throughput sequencing of 65 different species. Through the EKIS database, scientists can freely access information including BLAST functional annotation as well as Genechip and pathway information for KEGG. By integrating complex data into a framework of existing EST knowledge information, the EKIS provides new insights into specialized metabolic pathway information for an applied industrial material.


Assuntos
Mineração de Dados , Etiquetas de Sequências Expressas , Genoma , Redes e Vias Metabólicas , Metabolômica , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA