Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Korean Circulation Journal ; : 110-122, 2022.
Artigo em Inglês | WPRIM | ID: wpr-917379

RESUMO

Pulmonary hypertension is a rare and progressive illness with a devastating prognosis. Promising research efforts have advanced the understanding and recognition of the pathobiology of pulmonary hypertension. Despite remarkable achievements in terms of improving the survival rate, reducing disease progression, and enhancing quality of life, pulmonary arterial hypertension (PAH) is not completely curable. Therefore, an effective treatment strategy is still needed. Recently, many studies of the underlying molecular mechanisms and technological developments have led to new approaches and paradigms for PAH treatment. Management based on stem cells and related paracrine effects, epigenetic drugs and gene therapies has yielded prospective results for PAH treatment in preclinical research. Further trials are ongoing to optimize these important insights into clinical circumstances.

2.
The Korean Journal of Physiology and Pharmacology ; : 27-38, 2021.
Artigo em Inglês | WPRIM | ID: wpr-903939

RESUMO

Excessive salt intake induces hypertension, but several gamma-aminobutyric acid (GABA) supplements have been shown to reduce blood pressure. GABAsalt, a fermented salt by L. brevis BJ20 containing GABA was prepared through the post-fermentation with refined salt and the fermented GABA extract. We evaluated the effect of GABA-salt on hypertension in a high salt, high cholesterol diet induced mouse model. We analyzed type 1 macrophage (M1) polarization, the expression of M1 related cytokines, GABA receptor expression, endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) proliferation, and medial thicknesses in mice model. GABA-salt attenuated diet-induced blood pressure increases, M1 polarization, and TNF-α and inducible nitric oxide synthase (NOS) levels in mouse aortas, and in salt treated macrophages in vitro. Furthermore, GABA-salt induced higher GABAB receptor and endothelial NOS (eNOS) and eNOS phosphorylation levels than those observed in salt treated ECs. In addition, GABA-salt attenuated EC dysfunction by decreasing the levels of adhesion molecules (E-selectin, Intercellular Adhesion Molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1]) and of von Willebrand Factor and reduced EC death. GABA-salt also reduced diet-induced reductions in the levels of eNOS, phosphorylated eNOS, VSMC proliferation and medial thickening in mouse aortic tissues, and attenuated Endothelin-1 levels in salt treated VSMCs. In summary, GABA-salt reduced high salt, high cholesterol diet induced hypertension in our mouse model by reducing M1 polarization, EC dysfunction, and VSMC proliferation.

3.
The Korean Journal of Physiology and Pharmacology ; : 27-38, 2021.
Artigo em Inglês | WPRIM | ID: wpr-896235

RESUMO

Excessive salt intake induces hypertension, but several gamma-aminobutyric acid (GABA) supplements have been shown to reduce blood pressure. GABAsalt, a fermented salt by L. brevis BJ20 containing GABA was prepared through the post-fermentation with refined salt and the fermented GABA extract. We evaluated the effect of GABA-salt on hypertension in a high salt, high cholesterol diet induced mouse model. We analyzed type 1 macrophage (M1) polarization, the expression of M1 related cytokines, GABA receptor expression, endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) proliferation, and medial thicknesses in mice model. GABA-salt attenuated diet-induced blood pressure increases, M1 polarization, and TNF-α and inducible nitric oxide synthase (NOS) levels in mouse aortas, and in salt treated macrophages in vitro. Furthermore, GABA-salt induced higher GABAB receptor and endothelial NOS (eNOS) and eNOS phosphorylation levels than those observed in salt treated ECs. In addition, GABA-salt attenuated EC dysfunction by decreasing the levels of adhesion molecules (E-selectin, Intercellular Adhesion Molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1]) and of von Willebrand Factor and reduced EC death. GABA-salt also reduced diet-induced reductions in the levels of eNOS, phosphorylated eNOS, VSMC proliferation and medial thickening in mouse aortic tissues, and attenuated Endothelin-1 levels in salt treated VSMCs. In summary, GABA-salt reduced high salt, high cholesterol diet induced hypertension in our mouse model by reducing M1 polarization, EC dysfunction, and VSMC proliferation.

4.
Journal of Korean Clinical Nursing Research ; (3): 211-221, 2017.
Artigo em Coreano | WPRIM | ID: wpr-750209

RESUMO

PURPOSE: A National survey was conducted to assess neonatal intensive care nurses' practice, barriers, knowledge, and belief regarding Kangaroo Care (KC). METHODS: A descriptive survey was conducted. Kangaroo care questionares were sent to nurses in all hospitals in Korea whose were identified as providing neonatal intensive care services(N=263). Descriptive statistics were used to summarized the data. RESULTS: Among 67 neonatal care units, 61.1% adapted KC in their practice. About 60% of nurses in the KC providing hospital actually practiced KC. Major barrier of practicing KC were infant safety concerns, as well as work load of nurses. Respondants who had practiced KC were more knowledgable and were more positive in their belief regarding KC. CONCLUSION: The findings suggest that in order to overcome barriers of practicing KC, educational programs are recommended designed for nurses. In addition, development of KC practice guideline is necessary to facilicate successful and safe KC.


Assuntos
Humanos , Lactente , Recém-Nascido , Terapia Intensiva Neonatal , Método Canguru , Coreia (Geográfico) , Macropodidae , Padrões de Prática em Enfermagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA