Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Mem. Inst. Oswaldo Cruz ; 108(4): 408-413, jun. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-678281

RESUMO

In this study, we designed an experiment to predict a potential immunodominant T-cell epitope and evaluate the protectivity of this antigen in immunised mice. The T-cell epitopes of the candidate proteins (EgGST, EgA31, Eg95, EgTrp and P14-3-3) were detected using available web-based databases. The synthesised DNA was subcloned into the pET41a+ vector and expressed in Escherichia coli as a fusion to glutathione-S-transferase protein (GST). The resulting chimeric protein was then purified by affinity chromatography. Twenty female C57BL/6 mice were immunised with the antigen emulsified in Freund's adjuvant. Mouse splenocytes were then cultured in Dulbecco's Modified Eagle's Medium in the presence of the antigen. The production of interferon-γ was significantly higher in the immunised mice than in the control mice (> 1,300 pg/mL), but interleukin (IL)-10 and IL-4 production was not statistically different between the two groups. In a challenge study in which mice were infected with 500 live protoscolices, a high protectivity level (99.6%) was demonstrated in immunised BALB/C mice compared to the findings in the control groups [GST and adjuvant (Adj) ]. These results demonstrate the successful application of the predicted T-cell epitope in designing a vaccine against Echinococcus granulosus in a mouse model.


Assuntos
Animais , Feminino , Camundongos , Antígenos de Helmintos/imunologia , Equinococose/prevenção & controle , Echinococcus granulosus/imunologia , Epitopos de Linfócito T/imunologia , Proteínas de Helminto/imunologia , Modelos Animais de Doenças , Equinococose/imunologia , Camundongos Endogâmicos BALB C
2.
Electron. j. biotechnol ; 16(1): 4-4, Jan. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-663683

RESUMO

Background: Human alpha 1-antitrypsin (AAT) is a potent inhibitor of multiple serine proteases, and protects tissues against their harmful effects. Individuals with reduced or abnormal production of this inhibitor need intravenous administration of exogenous protein. In this study, we employed the methylotrophic (methanol utilizing) yeast Pichia pastoris (P. pastoris) as a preferential host for efficient production and secretion of recombinant AAT. Furthermore, we examined different strategies to maximize the yield of the secreted protein. Results: Our findings revealed that optimizing the codon usage of AAT gene for P. pastoris had positive effects on the level of secreted AAT under the control of inducible alcohol oxidase 1 (AOX1) and constitutive glycerol aldehyde phosphate dehydrogenase (GAP) promoters. Compared to AOX1, the GAP promoter increased the yield of AAT by more than two fold. It was also demonstrated that the human AAT native signal sequence was more effective than the well-known yeast signal sequence, alpha mating factor (α-MF). Doubling gene dosage nearly doubled the production of AAT, though dosages exceeding this limit had negative effects on the yield. Conclusion: P. pastoris is shown to be an efficient expression system for production of recombinant and biologically active AAT. Also different strategies could be used to elevate the amount of this secretable protein.


Assuntos
Humanos , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , alfa 1-Antitripsina/metabolismo , Transformação Genética , DNA/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , DNA Complementar , Inibidores Enzimáticos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA