Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 196-206, 2021.
Artigo em Chinês | WPRIM | ID: wpr-878554

RESUMO

Polyhydroxyalkanoates (PHAs) have obtained much attention in biomaterial fields due to their similar physicochemical properties to those of the petroleum-derived plastics. Poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] is one member of the PHAs family, and has better toughness and transparency compared to existing polylactic acid (PLA) and poly[(R)-3-hydroxybutyrate] [P(3HB)]. First, we confirmed the one-step biosynthesis of P(LA-co-3HB) with the lactate fraction of 23.8 mol% by introducing P(3HB-co-LA) production module into Escherichia coli MG1655. Then, the lactate fraction was increased to 37.2 mol% in the dld deficient strain WXJ01-03. The genes encoding the thioesterases, ydiI and yciA, were further knocked out, and the lactate fraction in the P(3HB-co-LA) was improved to 42.3 mol% and 41.1 mol% respectively. Strain WXJ03-03 with dld, ydiI and yciA deficient was used for the production of the LA-enriched polymer, and the lactate fraction was improved to 46.1 mol%. Notably, the lactate fraction in P(3HB-co-LA) from xylose was remarkably higher than from glucose, indicating xylose as a potent carbon source for P(3HB-co-LA) production. Therefore, the deficiency of thioesterase may be considered as an effective strategy to improve the lactate fraction in P(3HB-co-LA) in xylose fermentation.


Assuntos
Escherichia coli/genética , Hidroxibutiratos , Ácido Láctico , Poliésteres , Poli-Hidroxialcanoatos , Xilose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA