Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 186-92, 2016.
Artigo em Inglês | WPRIM | ID: wpr-638100

RESUMO

MicroRNAs (miRNAs) modulate the expression of tumorigenesis-related genes and play important roles in the development of various types of cancers. It has been reported that miR-144 is dysregulated and involved in multiple malignant tumors, but its role in renal cell carcinoma (RCC) remains elusive. In this study, we demonstrated miR-144 was significantly downregulated in human RCC. The decreased miR-144 correlated with tumor size and TNM stage. Moreover, overexpression of miR-144 in vitro suppressed RCC cell proliferation and G2 transition, which were reversed by inhibition of miR-144. Bioinformatic analysis predicted that mTOR was a potential target of miR-144, which was further confirmed by dual luciferase reporter assay. Additionally, the examination of clinical RCC specimens revealed that miR-144 was inversely related to mTOR. Furthermore, knocking down mTOR with siRNA had the same biological effects as those of miR-144 overexpression in RCC cells, including cell proliferation inhibition and S/G2 cell cycle arrest. In conclusion, our results indicate that miR-144 affects RCC progression by inhibiting mTOR expression, and targeting miR-144 may act as a novel strategy for RCC treatment.

2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 186-192, 2016.
Artigo em Inglês | WPRIM | ID: wpr-285289

RESUMO

MicroRNAs (miRNAs) modulate the expression of tumorigenesis-related genes and play important roles in the development of various types of cancers. It has been reported that miR-144 is dysregulated and involved in multiple malignant tumors, but its role in renal cell carcinoma (RCC) remains elusive. In this study, we demonstrated miR-144 was significantly downregulated in human RCC. The decreased miR-144 correlated with tumor size and TNM stage. Moreover, overexpression of miR-144 in vitro suppressed RCC cell proliferation and G2 transition, which were reversed by inhibition of miR-144. Bioinformatic analysis predicted that mTOR was a potential target of miR-144, which was further confirmed by dual luciferase reporter assay. Additionally, the examination of clinical RCC specimens revealed that miR-144 was inversely related to mTOR. Furthermore, knocking down mTOR with siRNA had the same biological effects as those of miR-144 overexpression in RCC cells, including cell proliferation inhibition and S/G2 cell cycle arrest. In conclusion, our results indicate that miR-144 affects RCC progression by inhibiting mTOR expression, and targeting miR-144 may act as a novel strategy for RCC treatment.


Assuntos
Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Renais , Genética , Metabolismo , Patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células , Fase G2 , Neoplasias Renais , Genética , Metabolismo , Patologia , MicroRNAs , Genética , Metabolismo , Fase S , Serina-Treonina Quinases TOR , Genética , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA