Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Physiologica Sinica ; (6): 846-854, 2019.
Artigo em Chinês | WPRIM | ID: wpr-781390

RESUMO

The purpose of the present study was to investigate the effect of advanced glycated albumin (AGE-alb) on pyroptosis of macrophages and the underlying molecular mechanisms. RAW264.7 macrophages were treated with AGE-alb (1, 2, 4 and 6 g/L) and control albumin (C-alb, 4 g/L) for 24 h, or preincubated with MCC950 (1 μmol/L) for 1 h and then treated with AGE-alb (4 g/L) for 24 h. Cell viability and caspase-1 activity were measured by MTT and assay kits, respectively. Lactate dehydrogenase (LDH) activity and the levels of interleukin-1β (IL-1β) and IL-18 in media were detected. Cell death degree was evaluated by TUNEL and Hoechst 33342/PI staining. The protein levels of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), procaspase-1 and cleaved caspase-1 were assessed by Western blot. The results showed that AGE-alb treatment caused obvious decrease in cell viability and increases in LDH leakage and the percentages of TUNEL- or PI-positive cells in a concentration-dependent manner. Additionally, AGE-alb promoted IL-1β and IL-18 secretion, upregulated NLRP3 expression, and increased caspase-1 activity especially at the dose of 4 and 6 g/L. However, MCC950 (an NLRP3 inhibitor) pretreatment inhibited significantly the decrease in cell viability and the increases in LDH leakage and percentages of TUNEL- or PI-positive cells induced by AGE-alb. Furthermore, MCC950 attenuated obviously AGE-alb-induced IL-1β and IL-18 secretion and caspase-1 activation. These results indicate that AGE-alb may induce macrophage pyroptosis, and the mechanism is at least partially by activating NLRP3-caspase-1 pathway.


Assuntos
Caspase 1 , Regulação da Expressão Gênica , Interleucina-1beta , Genética , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Genética , Piroptose , Albumina Sérica , Farmacologia
2.
Acta Physiologica Sinica ; (6): 515-521, 2017.
Artigo em Chinês | WPRIM | ID: wpr-348245

RESUMO

Autophagy is a cellular catabolic process responsible for removing the injured proteins and organelles via lysosome-dependent pathway, and it plays an important role in maintaining cellular homeostasis. Recent studies have shown that autophagy is activated and implicated in the pathogenesis of atherosclerosis. Autophagy can be triggered by oxidative lipids, cytokines and advanced glycation end products, and exerts protective or detrimental functions in the progression of atherosclerosis. However, the precise role and mechanisms of autophagy in different stages of atherosclerosis are still not fully clarified. This review highlights recent findings regarding autophagy response in vascular cells and its potential contribution to atherogenesis. Additionally, the relationship of autophagy with endoplasmic reticulum stress and whether autophagy could be a new therapeutic target for atherosclerosis are also discussed.

3.
Acta Physiologica Sinica ; (6): 767-774, 2017.
Artigo em Chinês | WPRIM | ID: wpr-348220

RESUMO

The purpose of this study was to investigate whether activating transcription factor 6 (ATF6), a sensor to endoplasmic reticulum stress (ERS), would mediate advanced glycated albumin (AGE-alb)-induced macrophage apoptosis and to elucidate the possible molecular mechanisms. RAW264.7 macrophages were cultured in vitro and treated with AGE-alb (2, 4 and 6 g/L), normal control albumin or tunicamycin (TM, 4 mg/L) for 24 h. ATF6 small interfering RNA (siRNA) was transfected to RAW264.7 cells by Lipofectamine 2000. Cell viability and apoptosis were determined by MTT method and Annexin V-FITC/propidium iodide apoptosis detection kit, respectively. The activities of lactate dehydrogenase (LDH) in medium and caspase-3 in cells were measured by corresponding detection kits. ATF6 nuclear translocation was detected by Western blot and immunofluorescence cytochemistry. Protein and mRNA levels of C/EBP homologous protein (CHOP, a key-signaling component of ERS-induced apoptosis) were detected by Western blot and real-time fluorescence quantitative PCR, respectively. The results showed that similar to TM, AGE-alb increased the expression of CHOP at both the protein and mRNA levels in a concentration dependent manner. ATF6, as a factor that positively regulates CHOP expression, was activated by AGE-alb in a concentration dependent manner. siRNA-mediated knockdown of ATF6 significantly inhibited AGE-alb-induced macrophage injury, as indicated by the increased cell viability and the decreased LDH release, apoptosis and caspase-3 activation. Additionally, ATF6 siRNA attenuated AGE-alb-induced CHOP upregulation at both the protein and mRNA levels. These results suggest that ATF6 and its downstream molecule CHOP are involved in AGE-alb-induced macrophage apoptosis.

4.
Acta Physiologica Sinica ; (6): 733-739, 2016.
Artigo em Chinês | WPRIM | ID: wpr-331609

RESUMO

The purpose of the present study was to investigate the effect of advanced glycated albumin (AGE-alb) on the activation of caspase-12, a key molecule in endoplasmic reticulum stress (ERS)-associated apoptotic pathway, and to elucidate the underlying molecular mechanisms of macrophage apoptosis. RAW264.7 macrophages were treated with AGE-alb (2, 4 and 6 g/L), control albumin (C-alb, 4 g/L), tunicamycin (TM, 4 mg/L), or pretreated with 4-phenylbutyric acid (PBA, 5 mmol/L) for 1 h and then treated with AGE-alb (4 g/L). After incubation for 24 h, the cell viability and apoptosis were determined by using MTT assay and TUNEL detection kit, respectively. Lactate dehydrogenase (LDH) activity in media was determined by using an assay kit. The protein levels of caspase-12 were examined by Western blot analysis. The results showed that like TM (an ERS inducer), incubation with AGE-alb led to significant decrease in viability and increase in LDH activity in media and apoptotic rate in a dose-dependent manner. In addition, AGE-alb induced activation of caspase-12 especially at the concentration of 4 and 6 g/L (P < 0.01), which was similar to TM. However, PBA (an ERS inhibitor) protected RAW264.7 macrophages from AGE-alb-induced decrease in viability and increases in LDH activity and apoptosis. Moreover, PBA also inhibited the caspase-12 activation induced by AGE-alb (P < 0.05). These results suggest that AGE-alb may induce apoptosis in RAW 264.7 macrophages, and the mechanism may be related to the activation of ERS-associated apoptotic pathway mediated by caspase-12.


Assuntos
Animais , Camundongos , Apoptose , Caspase 12 , Linhagem Celular Tumoral , Sobrevivência Celular , Estresse do Retículo Endoplasmático , Macrófagos , Fenilbutiratos , Albumina Sérica , Tunicamicina
5.
Acta Physiologica Sinica ; (6): 489-495, 2014.
Artigo em Chinês | WPRIM | ID: wpr-297466

RESUMO

Pigment epithelium-derived factor (PEDF) is a multifunctional protein with anti-inflammatory, antioxidant and antithrombotic properties and plays a protective role against atherosclerosis (AS). The purpose of the present study is to explore the effects of oxidized low density lipoprotein (ox-LDL) on the expression of PEDF in cultured human umbilical vein endothelial cells (HUVECs). HUVECs were cultured and incubated with ox-LDL at different concentrations (6.25, 12.5, 25, 50, 100 and 150 mg/L) for 24 h. Apoptosis of endothelial cells were assayed by morphological staining and flow cytometry. The intracellular reactive oxygen species (ROS) levels were measured by flow cytometry. Cell viability was assayed by MTT assay. PEDF protein and mRNA expressions in HUVECs were analyzed by Western blot and quantitative real-time PCR, respectively. The results showed that ox-LDL significantly induced apoptosis, reduced cell viability, increased intracellular ROS levels and decreased the PEDF expression in HUVECs in a concentration-dependent manner. Ox-LDL at 50 mg/L obviously decreased the PEDF protein expression compared with control group (P < 0.05), whereas 25 mg/L ox-LDL already markedly reduced the PEDF mRNA expression (P < 0.05). In conclusion, the results suggest that ox-LDL down-regulates the PEDF expression through an increased ox-LDL-induced intracellular production of ROS.


Assuntos
Humanos , Apoptose , Células Cultivadas , Regulação para Baixo , Proteínas do Olho , Metabolismo , Células Endoteliais da Veia Umbilical Humana , Biologia Celular , Lipoproteínas LDL , Farmacologia , Fatores de Crescimento Neural , Metabolismo , Espécies Reativas de Oxigênio , Metabolismo , Serpinas , Metabolismo
6.
Acta Physiologica Sinica ; (6): 612-618, 2014.
Artigo em Chinês | WPRIM | ID: wpr-255995

RESUMO

The present study was to investigate whether endoplasmic reticulum stress (ERS) was involved in oxidized low density lipoprotein (ox-LDL)-induced scavenger receptor A1 (SR-A1) upregulation in macrophages. RAW264.7 cells were pretreated with 20 mmol/L of 4-phenylbutyric acid (PBA) for 30 min and then treated with ox-LDL (50 mg/L) for 12 h or stimulated with 2 mg/L tunicamycin (TM) or 2 μmol/L thapsigagin (TG) for 4 h. In addition, RAW264.7 cells were incubated with 0.5, 1 and 2 mg/L TM for 4 h or treated with 2 mg/L TM for 1, 2 and 4 h, respectively. The intracellular total cholesterol (TC) content was measured using a tissue/cell total cholesterol assay kit. The protein and mRNA expressions of SR-A1 and glucose-regulated protein 78 (GRP78) were analyzed by Western blot and real-time PCR, respectively. Dil-ox-LDL uptake was detected using a microplate reader. The results showed that ox-LDL-induced cholesterol accumulation in macrophages was attenuated by PBA, an ERS inhibitor. Ox-LDL caused significant SR-A1 upregulation with concomitant activation of ERS as assessed by upregulation of GRP78, whereas PBA significantly inhibited the ox-LDL-induced SR-A1 upregulation (P < 0.05) and slightly decreased GRP78 expression by 39.3% (P = 0.057). TM, an ERS inducer, upregulated SR-A1 protein expression and ox-LDL uptake in dose- and time-dependent manner, but had no significant effect on SR-A1 mRNA level. However, the TM- or TG-induced SR-A1 upregulation and ox-LDL uptake were significantly mitigated by PBA. These data indicate that ERS plays a critical role in ox-LDL-induced SR-A1 upregulation, which in turn enhances the foam cell formation by uptaking more ox-LDL.


Assuntos
Animais , Camundongos , Linhagem Celular , Colesterol , Metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico , Metabolismo , Lipoproteínas LDL , Farmacologia , Macrófagos , Metabolismo , Receptores Depuradores Classe A , Metabolismo , Regulação para Cima
7.
Acta Physiologica Sinica ; (6): 47-54, 2013.
Artigo em Chinês | WPRIM | ID: wpr-333136

RESUMO

The purposes of the present study were to investigate the inhibitory effect of quercetin (QUE) preconditioning on endoplasmic reticulum stress (ERS) inducer tunicamycin (TM)-induced apoptosis in RAW264.7 macrophages and the underlying molecular mechanisms. RAW264.7 cells were pretreated with different concentrations (20, 40, and 80 μmol/L) of QUE for 30 min and then treated with TM (5 mg/L) for 12 h. Cell viability and apoptosis were determined using MTT assay and Annexin V-FITC apoptosis detection kit, respectively. The nuclear translocation of activating transcription factor 6 (ATF6) in cells was detected by immunofluorescence analysis and Western blot. Protein and mRNA expressions of C/EBP homologous protein (CHOP) and Bcl-2 were examined by Western blot and real-time PCR, respectively. The results showed that TM reduced cell viability and induced apoptosis in RAW264.7 macrophages. The cytotoxic effects of TM were significantly inhibited by QUE pretreatment at the concentrations of 40 and 80 μmol/L. Interestingly, we found that QUE also significantly suppressed the TM-induced translocation of ATF6, an ERS sensor, from the cytoplasm to the nucleus. In addition, exposure of RAW264.7 macrophages to TM resulted in a significant increase of the expression of CHOP, a transcription factor regulated by ATF6 under conditions of ERS, as well as a decrease of Bcl-2 at transcript and protein levels. QUE blocked these effects in a dose-dependent manner. These data indicate that QUE can protect RAW264.7 cells from TM-induced apoptosis and that the mechanism at least partially involves its ability to inhibit the ATF6-CHOP signaling pathway.


Assuntos
Animais , Camundongos , Fator 6 Ativador da Transcrição , Metabolismo , Apoptose , Sobrevivência Celular , Estresse do Retículo Endoplasmático , Macrófagos , Biologia Celular , Quercetina , Farmacologia , Fator de Transcrição CHOP , Metabolismo , Tunicamicina , Farmacologia
8.
Acta Physiologica Sinica ; (6): 149-154, 2012.
Artigo em Chinês | WPRIM | ID: wpr-335929

RESUMO

Endoplasmic reticulum (ER) stress occurs in macrophage-rich areas of advanced atherosclerotic lesions and contributes to macrophage apoptosis and subsequent plaque necrosis. The purpose of the present study was to investigate the effects of caveolin-1 (Cav-1) on ER stress-induced apoptosis in cultured macrophages and the underlying mechanisms. RAW264.7 cells were incubated with thapsigargin (TG) to establish ER stress model. And Cav-1 expression was detected by Western blot. After being pretreated with filipin(III), a caveolae inhibitor, RAW264.7 cells were assayed with flow cytometry and confocal laser scanning microscopy to detect cell apoptosis. Moreover, p38 mitogen-activated protein kinase (MAPK) phosphorylation and C/EBP homologous protein (CHOP) expression were detected with Western blot. The results showed that Cav-1 expression was markedly increased at early stage of TG treatment (P < 0.05) and then decreased with prolonged or high dose TG treatments. The increasing of Cav-1 expression induced by TG in RAW264.7 cells was abolished under inhibition of caveolae by filipin(III) (P < 0.05). The effect of TG on apoptosis of RAW264.7 cells was further augmented after pretreatment with filipin(III) (P < 0.05). Western blotting showed that MAPK phosphorylation induced by TG was inhibited by filipin(III) in RAW264.7 cells (P < 0.05), whereas CHOP remained unchanged (P > 0.05). These results suggest that Cav-1 may play a critical role in suppressing ER stress-induced macrophages apoptosis in vitro, and one of the mechanisms may be correlated with the activation of p38 MAPK prosurvival pathway.


Assuntos
Animais , Camundongos , Apoptose , Caveolina 1 , Genética , Metabolismo , Linhagem Celular , Estresse do Retículo Endoplasmático , Fisiologia , Filipina , Farmacologia , Sistema de Sinalização das MAP Quinases , Macrófagos , Biologia Celular , Tapsigargina , Farmacologia , Fator de Transcrição CHOP , Metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno , Metabolismo
9.
Acta Physiologica Sinica ; (6): 574-580, 2011.
Artigo em Chinês | WPRIM | ID: wpr-335953

RESUMO

The different biological functions were studied in mouse bone marrow-derived endothelial progenitor cells isolated by differential time attachment to obtain the optimal adherent time in this study. Density gradient centrifugation-isolated bone marrow mononuclear cells were seeded on the fibronectin-coated dish. The 1-day cultured unattached cells were seeded on the second dish for 2 more days. Then unattached cells in the second dish were seeded on the third dish. The cells on 3 dishes were defined as 1-day adherent cells, 3-day adherent cells and 3-day unattached cells, respectively. After 20-day culture, the biological functions, such as the percentage of biomarkers, the ability of adhesion, and the ability of forming tubes in vitro were analyzed. The results showed that the percentages of positive CD34, FLK-1, and CD34/FLK-1 expressions in 1-day attached cells were significantly increased compared to those in the 3-day adherent or unattached cells (P < 0.01), which showed the strongest adhesion ability. The expression of eNOS in 1- or 3-day adherent cells was significantly higher than that in 3-day unattached cells (P < 0.01). The expression of VEGF in 3-day adherent cells was significantly higher than that in 1-day adherent cells or 3-day unattached cells (P < 0.01). These results suggest the biological functions of 1-day adherent cells are significantly stronger than that of 3-day adherent or unattached cells. VEGF expression in 3-day adherent cells is higher than that in 1-day adherent cells or 3-day unattached cells. The expression of eNOS in 1-day adherent cells or 3-day adherent cells is higher than that in 3-day unattached cells. The optimal adherent time to obtain mouse bone marrow-derived endothelial progenitor cells is 1-3 d.


Assuntos
Animais , Masculino , Camundongos , Células da Medula Óssea , Biologia Celular , Técnicas de Cultura de Células , Métodos , Diferenciação Celular , Separação Celular , Métodos , Células Cultivadas , Células Endoteliais , Biologia Celular , Metabolismo , Leucócitos Mononucleares , Biologia Celular , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III , Metabolismo , Células-Tronco , Biologia Celular , Metabolismo , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular , Metabolismo
10.
Chinese Medical Journal ; (24): 3334-3340, 2011.
Artigo em Inglês | WPRIM | ID: wpr-319121

RESUMO

<p><b>BACKGROUND</b>Ischemic postconditioning (I-postC) is a newly discovered and more amenable cardioprotective strategy capable of protecting the myocardium from ischemia/reperfusion (I/R) injury. Endoplasmic reticulum (ER) is a principal site for secretary protein synthesis and calcium storage. Myocardial I/R causes ER stress and emerging studies suggest that the cardioprotection has been linked to the modulation of ER stress. The aim of the present study was to determine whether cardioprotection of I-postC involves reduction in ER stress through calcineurin pathway.</p><p><b>METHODS</b>In the in vivo model of rat myocardial I/R, myocardial infarct size was measured by triphenyltetrazolium chloride (TTC) staining and apoptosis was detected using terminal eoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay. Expression of calreticulin, C/EBP homologous protein (CHOP), caspase-12, and activation of caspase-12 in myocardium were detected by Western blotting. The activity and expression of calcineurin in myocardium were also detected.</p><p><b>RESULTS</b>I-postC protected the I/R heart against apoptosis, myocardial infarction, and leakage of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB). I-postC suppressed I/R-induced ER stress, as shown by a decrease in the expression of calreticulin and CHOP, and caspase-12 activation. I-postC downregulated calcineurin activation in myocardium subjected to I/R.</p><p><b>CONCLUSION</b>I-postC protects myocardium from I/R injury by suppressing ER stress and calcineurin pathways are not associated with the I-postC-induced suppression of ER stress-related apoptosis.</p>


Assuntos
Animais , Masculino , Ratos , Apoptose , Fisiologia , Western Blotting , Calcineurina , Metabolismo , Creatina Quinase Forma MB , Sangue , Estresse do Retículo Endoplasmático , Fisiologia , Hemodinâmica , Pós-Condicionamento Isquêmico , L-Lactato Desidrogenase , Sangue , Infarto do Miocárdio , Sangue , Metabolismo , Traumatismo por Reperfusão Miocárdica , Sangue , Metabolismo , Miocárdio , Metabolismo , Patologia , Miócitos Cardíacos , Biologia Celular , Proteínas Proto-Oncogênicas c-bcl-2 , Metabolismo , Ratos Sprague-Dawley , Proteína X Associada a bcl-2 , Metabolismo
11.
Acta Physiologica Sinica ; (6): 433-440, 2010.
Artigo em Chinês | WPRIM | ID: wpr-337729

RESUMO

The purpose of the present study is to explore the effect of oxidized low density lipoprotein (ox-LDL) on the induction of endoplasmic reticulum stress (ERS) and the underlying mechanisms in ox-LDL-induced macrophage foam-forming process. RAW264.7 macrophages were cultured in DMEM medium containing 10% fetal bovine serum, and then treated with ox-LDL (25, 50 and 100 mg/L), anti-CD36 monoclonal antibody+ox-LDL and tunicamycin (TM), respectively. After incubation for 24 h, the cells were collected. The cellular lipid accumulation was showed by oil red O staining and the content of cellular total cholesterol was quantified by enzymatic colorimetry. The expression of glucose-regulated protein 94 (GRP94), a molecular marker of ERS, was determined by immunocytochemistry assay. The levels of GRP94 protein, phosphorylated inositol-requiring enzyme 1 (p-IRE1) and X box binding protein 1 (XBP1) in RAW264.7 cells were detected by Western blotting. The results indicated that after incubation with ox-LDL (25, 50 and 100 mg/L) for 24 h, a large amount of lipid droplets were found in the cytoplasm, and the contents of cellular total cholesterol were increased by 2.1, 2.8 and 3.1 folds compared with the control, respectively. Anti-CD36 antibody decreased markedly the cellular lipid accumulation induced by ox-LDL at 100 mg/L. Both ox-LDL and TM, a specific ERS inducer, could up-regulate the protein expression of GRP94 in a dose-dependent manner. Furthermore, p-IRE1 and XBP1, two key components of the unfolded protein response, were also significantly induced by the treatment with ox-LDL. The up-regulations of the three proteins induced by ox-LDL were inhibited significantly when the macrophages were pre-incubated with anti-CD36 antibody. These results suggest that ox-LDL may induce ERS in a dose-dependent way and subsequently activate the unfolded protein response signaling pathway in RAW264.7 macrophages, which is potentially mediated by scavenger receptor CD36.


Assuntos
Animais , Camundongos , Antígenos CD36 , Fisiologia , Linhagem Celular , Células Cultivadas , Proteínas de Ligação a DNA , Metabolismo , Retículo Endoplasmático , Células Espumosas , Biologia Celular , Lipoproteínas LDL , Farmacologia , Macrófagos , Biologia Celular , Glicoproteínas de Membrana , Metabolismo , Proteínas de Membrana , Metabolismo , Proteínas Serina-Treonina Quinases , Metabolismo , Fatores de Transcrição de Fator Regulador X , Estresse Fisiológico , Fatores de Transcrição , Metabolismo , Proteína 1 de Ligação a X-Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA