Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Zhonghua Yu Fang Yi Xue Za Zhi ; (12): 693-700, 2023.
Artigo em Chinês | WPRIM | ID: wpr-985460

RESUMO

Objective: To investigate the toxicity of tris (2-chloropropyl) phosphate (TCIPP) and tributyl phosphate (TnBP) on the growth and development of zebrafish embryos, as well as to explore the underlying mechanisms at the transcriptional level. Methods: With zebrafish as a model, two hpf zebrafish embryos were exposed to TCIPP and TnBP (0.1, 1, 10, 100, 500, and 1 000 μmol/L) using the semi-static method, and their rates of lethality and hatchability were determined. The transcriptome changes of 120 hpf juvenile zebrafish exposed to environmentally relevant concentrations of 0.1 and 1 μmol/L were measured. Results: The 50% lethal concentrations (LC50) of TCIPP and TnBP for zebrafish embryos were 155.30 and 27.62 μmol/L (96 hpf), 156.5 and 26.05 μmol/L (120 hpf), respectively. The 72 hpf hatching rates of TCIPP (100 μmol/L) and TnBP (10 μmol/L) were (23.33±7.72)% and (91.67±2.97)%, which were significantly decreased compared with the control group (P<0.05). Transcriptome analysis showed that TnBP had more differential genes (DEGs) than TCIPP, with a dose-response relationship. These DEGs were enriched in 32 pathways in total, including those involved in oxidative stress, energy metabolism, lipid metabolism, and nuclear receptor-related pathways, using the IPA pathway analysis. Among them, three enriched pathways overlapped between TCIPP and TnBP, including TR/RXR activation and CAR/RXR activation. Additionally, DEGs were also mapped onto pathways of LXR/RXR activation and oxidative stress for TnBP exposure only. Conclusion: Both TCIPP and TnBP have growth and developmental toxicities in zebrafish embryos, with distinct biomolecular mechanisms, and TnBP has a stronger effect than TCIPP.


Assuntos
Animais , Peixe-Zebra/metabolismo , Embrião não Mamífero/metabolismo , Transcriptoma , Estresse Oxidativo , Poluentes Químicos da Água/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; (24): 5681-5689, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008766

RESUMO

Circadian rhythm refers to the daily rhythmic variations in an organism. The irregular lifestyles of modern humans have led to a high incidence of chronic diseases, highlighting an inseparable relationship between disrupted circadian rhythm and disease development. TCM has long discussed rhythmic variations, with records dating back to the Yellow Emperor's Inner Canon(Huang Di Nei Jing), which laid a rich theoretical foundation for the research on circadian rhythm. Modern medical research has provided a more comprehensive explanation of its molecular mechanisms. This article integrated the current understanding of circadian rhythm in both Chinese and western medicine, emphasizing the crucial relationship between rhythm regulation and disease treatment. By highlighting the interdisciplinary nature of the two fields, it offers new directions for exploring the field of chronomedicine.


Assuntos
Humanos , Medicina Tradicional Chinesa , Terapia por Acupuntura , Ritmo Circadiano , Pesquisa Biomédica , Polygonatum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA