Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Chinese Medical Journal ; (24): 1688-1695, 2020.
Artigo em Inglês | WPRIM | ID: wpr-827923

RESUMO

BACKGROUND@#Zinc finger and BTB domain-containing protein 46 (Zbtb46) is a transcription factor identified in classical dendritic cells, and maintains dendritic cell quiescence in a steady state. Zbtb46 has been reported to be a negative indicator of acute myeloid leukemia (AML). We found that Zbtb46 was expressed at a relatively higher level in hematopoietic stem and progenitor cells (HSPCs) compared to mature cells, and higher in AML cells compared to normal bone marrow (BM) cells. However, the role of Zbtb46 in HSPCs and AML cells remains unclear. Therefore, we sought to elucidate the effect of Zbtb46 in normal hematopoiesis and AML cells.@*METHODS@#We generated Zbtb46 and Zbtb46Mx1-Cre mice. The deletion of Zbtb46 in Zbtb46Mx1-Cre mice was induced by intraperitoneal injection of double-stranded poly (I). poly (C) (poly(I:C)), and referred as Zbtb46 cKO. After confirming the deletion of Zbtb46, the frequency and numbers of HSPCs and mature blood cells were analyzed by flow cytometry. Serial intraperitoneal injection of 5-fluorouracil was administrated to determine the repopulation ability of HSCs from Zbtb46 and Zbtb46 cKO mice. The correlation between Zbtb46 expression and prognosis was analyzed using the data from the Cancer Genome Atlas. To investigate the role of Zbtb46 in AML cells, we knocked down the expression of Zbtb46 in THP-1 cells using lentiviral vectors expressing small hairpin RNAs targeting Zbtb46. Cell proliferation rate was determined by cell count assay. Cell apoptosis and bromodeoxyuridine incorporation were determined by flow cytometry.@*RESULTS@#The percentages and absolute numbers of HSPCs and mature blood cells were comparable in Zbtb46 cKO mice and its Zbtb46 littermates (Zbtb46vs. Zbtb46 cKO, HPC: 801,310 ± 84,282 vs. 907,202 ± 97,403, t = 0.82, P = 0.46; LSK: 86,895 ± 7802 vs. 102,210 ± 5025, t = 1.65, P = 0.17; HSC: 19,753 ± 3116 vs. 17,608 ± 3508, t = 0.46, P = 0.67). The repopulation ability of HSCs from Zbtb46Mx1-Cre mice was similar to those from Zbtb46 control (P = 0.26). Zbtb46 had elevated expression in AML cells compared to total BM cells from normal control. Knockdown of Zbtb46 in THP-1 cells led to a significant increase in cell apoptosis and reduced cell growth and proliferation.@*CONCLUSION@#Collectively, our data indicate that Zbtb46 is essential for survival and proliferation of AML cells, but dispensable for normal hematopoiesis.

2.
Journal of Experimental Hematology ; (6): 1709-1715, 2015.
Artigo em Chinês | WPRIM | ID: wpr-272534

RESUMO

<p><b>OBJECTIVE</b>To explore the effects of basic fibroblast growth factor (bFGF) on human bone marrow mesenchymal stem cell (hBMMSC) damaged by irradiation and its underlying mechanisms.</p><p><b>METHODS</b>hBMMSC was irradiated with 0, 6, 12 Gy X ray, then flow cytometry, cell counting kit-8 (CCK-8), Western blot and alizarin red staining were used to detect the effects of X ray on apoptosis, proliferation and osteogenic differentiation of hBMMSC; 0, 1, 5, 10, 20 ng/ml bFGF was added to hBMMSC irradiated with X ray for selecting the suitable bFGF reaction concentration; then the Western blot was used to detect the expression of PDGFRα so as to evaluate whether the expression of PDGFRα participated in bFGF-mediated recovery of hBMMSC proliferation and osteogenic differentiation after irradiation.</p><p><b>RESULTS</b>The proliferation and osteogenic differentiation of hBMMSC decreased remarkably after irradiation. bFGF promoted the recovery of proliferation and osteogenic differentiation of irradiated hBMMSC compared with untreated irradiated hBMMSC (P < 0.05); 5 ng/ml bFGF was identified as the optimal concentration. A significant difference in the number of apoptotic cells could be detected only between the 0 Gy group and 12 Gy group at the 24 h time point, while no differences were detected at later time points. Irradiated hBMMSC showed remarkable decrease of PDGFRα expression, while the PDGFRα expression increased after bFGF was added.</p><p><b>CONCLUSION</b>Irradiation dose not show significant effect on apoptosis of hBMMSC, but the bFGF displays a effect on repairing the irradiation damage of hBMMSC and promotes the recovery of hBMMSC proliferation and osteogenic differentiation. The damage of hBMMSC proliferation and osteogenic differentiation associates with downregulation of PDGFRα expression induced by irrediation. PDGFRα involves in repairing effect of bFGF on irradiation damage of hBMMSC.</p>


Assuntos
Humanos , Apoptose , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos , Células-Tronco Mesenquimais , Osteogênese , Receptor alfa de Fator de Crescimento Derivado de Plaquetas
3.
Journal of Experimental Hematology ; (6): 242-245, 2010.
Artigo em Chinês | WPRIM | ID: wpr-328535

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is the hematological malignancy of bone marrow characterized by the rapid proliferation and subsequent accumulation of immature T lymphocyte and mainly occurs in children and adolescents. In 1991, a kind of activating mutation of Notch 1 was found in a subset of T-ALL with chromosomal translocation t(7;9) for the first time. During the past 20 years since then, understanding of the relationship between Notch 1 activating mutation and T-ALL has been deepened and widened. This review briefly discusses the four main subtypes of Notch 1 activating mutations, also focuses on how these mutations change the normal signaling pathways and genes expression during their participation in the pathogenesis of T-ALL, and how these insights will promote the development of newly targeting therapies for patients with this aggressive form of leukemia.


Assuntos
Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Genética , Receptor Notch1 , Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA