Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Chinese Medical Journal ; (24): 435-439, 2018.
Artigo em Inglês | WPRIM | ID: wpr-342020

RESUMO

<p><b>Background</b>The pathogenesis of postural tachycardia syndrome (POTS) remains unclear. This study aimed to explore the changes and significance of sulfur dioxide (SO) in patients with POTS.</p><p><b>Methods</b>The study included 31 children with POTS and 27 healthy children from Peking University First Hospital between December 2013 and October 2015. A detailed medical history, physical examination results, and demographic characteristics were collected. Hemodynamics was recorded and the plasma SOwas determined.</p><p><b>Results</b>The plasma SOwas significantly higher in POTS children compared to healthy children (64.0 ± 20.8 μmol/L vs. 27.2 ± 9.6 μmol/L, respectively, P < 0.05). The symptom scores in POTS were positively correlated with plasma SOlevels (r = 0.398, P < 0.05). In all the study participants, the maximum heart rate (HR) was positively correlated with plasma levels of SO(r = 0.679, P < 0.01). The change in systolic blood pressure from the supine to upright (ΔSBP) in POTS group was smaller than that in the control group (P < 0.05). The ΔSBP was negatively correlated with baseline plasma SOlevels in all participants (r = -0.28, P < 0.05). In the control group, ΔSBP was positively correlated with the plasma levels of SO(r = 0.487, P < 0.01). The change in HR from the supine to upright in POTS was obvious compared to that of the control group. The area under curve was 0.967 (95% confidence interval: 0.928-1.000), and the cutoff value of plasma SOlevel >38.17 μmol/L yielded a sensitivity of 90.3% and a specificity of 92.6% for predicting the diagnosis of POTS.</p><p><b>Conclusions</b>Increased endogenous SOlevels might be involved in the pathogenesis of POTS.</p>

2.
Chinese Journal of Pediatrics ; (12): 890-894, 2011.
Artigo em Chinês | WPRIM | ID: wpr-356348

RESUMO

<p><b>OBJECTIVE</b>To explore the impact of sulfur dioxide (SO(2)) on hydrogen sulfide (H(2)S)/cystathionine-γ-lyase (CSE) and H(2)S/mercaptopyruvate sulfurtransferase (MPST) pathways in the pathogenesis of hypoxic pulmonary hypertension.</p><p><b>METHODS</b>Thirty-two male Wistar rats were randomly divided into four groups: control group (n = 8), hypoxic group (n = 8), hypoxic + SO(2) group (n = 8) and hypoxic + hydroxamate (HDX) group (n = 8). After 21 days of experiment, the concentration and production of H(2)S in lung tissues were measured respectively for each rat. The protein expression of CSE and MPST in intima and media of small pulmonary arteries in rats was detected with immunohistochemical method.</p><p><b>RESULTS</b>Compared with control group, the mean pulmonary artery pressure (mPAP) in rats of hypoxic group was increased significantly [(33.38 ± 6.32) mm Hg vs. (16.74 ± 3.81) mm Hg, P < 0.01]. Compared with hypoxic group, the mPAP in rats of hypoxic + SO(2) group was decreased significantly [(29.65 ± 2.53) mm Hg vs. (33.38 ± 6.32) mm Hg, P < 0.01]. However, compared with hypoxic group, the mPAP in rats of hypoxic + HDX group was increased significantly [(39.44 ± 6.26) mm Hg vs. (33.38 ± 6.32) mm Hg, P < 0.01]. Compared with control group, the concentration [(2.02 ± 0.43) µmol/g vs. (3.11 ± 0.42) µmol/g, P < 0.01] and production [(19.64 ± 3.48) nmol/(g·min)vs. (28.20 ± 5.95) nmol/(g·min), P < 0.05] of H(2)S were decreased significantly in rats of hypoxic group, respectively. When treated with SO(2), hypoxic rats showed an increased concentration [(2.73 ± 0.20) µmol/g vs. (2.02 ± 0.43) µmol/g, P < 0.01] and production [(26.24 ± 1.92) nmol/(g·min) vs. (19.64 ± 3.48) nmol/(g·min), P < 0.01] of H(2)S in lung tissue compared with those without receiving SO(2) treatment. When treated with HDX, hypoxic rats showed a significant decrease in concentration [(1.64 ± 0.23) µmol/g vs. (2.02 ± 0.43) µmol/g, P < 0.05] and production [(13.94 ± 3.63) nmol/(g·min) vs. (19.64 ± 3.48) nmol/(g·min), P < 0.05] of H(2)S in lung tissue compared with those without receiving HDX treatment. As for the expression of CSE in small pulmonary arteries (SPAs), compared with control group, the expression of CSE in intima [(0.31 ± 0.02) vs. (0.36 ± 0.01), P < 0.01] and media [(0.27 ± 0.01) vs. (0.30 ± 0.01), P < 0.01] in rats of hypoxic group was decreased significantly. While compared with hypoxic group, the expression of CSE in intima [(0.35 ± 0.02) vs. (0.31 ± 0.02), P < 0.01] in SPAs of hypoxic + SO(2) group was increased significantly. With HDX treatment, the expression of CSE in intima [(0.26 ± 0.01) vs. (0.31 ± 0.02), P < 0.01] in SPAs of hypoxic group was lower than that without HDX treatment. As for the expression of MPST in SPAs, compared with hypoxic group, the expression of MPST in media [(0.32 ± 0.02) vs. (0.29 ± 0.01), P < 0.01] in SPAs of hypoxic + SO(2) group was increased significantly.</p><p><b>CONCLUSION</b>SO(2) might upregulate H(2)S/CSE and H(2)S/MPST pathways in pulmonary arteries of hypoxic rats.</p>


Assuntos
Animais , Masculino , Ratos , Cistationina gama-Liase , Metabolismo , Sulfeto de Hidrogênio , Metabolismo , Hipertensão Pulmonar , Hipóxia , Metabolismo , Artéria Pulmonar , Metabolismo , Ratos Wistar , Dióxido de Enxofre , Farmacologia , Sulfurtransferases , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA