Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. J. Pharm. Sci. (Online) ; 59: e21460, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439502

RESUMO

Abstract Clay minerals are still widely used in pharmaceutical products for human health and cosmetic purposes. Pre-formulation studies were conducted to identify solid-state properties of pink clay, a sample from Diamantina, Brazil. Among the solid properties to be analyzed, we have selected type identification, iron phases, crystallinity, powder flow characteristics, thermal behavior, and non-isothermal phase transition kinetics. The pink clay is composed of (1:1) clay type and kaolinite as the main component. The Mössbauer spectrum of pink clay shows Fe3+(α-Fe2O3) Clay minerals are still widely used in pharmaceutical products for human health and cosmetic purposes. Pre-formulation studies were conducted to identify solid-state properties of pink clay, a sample from Diamantina, Brazil. Among the solid properties to be analyzed, we have selected type identification, iron phases, crystallinity, powder flow characteristics, thermal behavior, and non-isothermal phase transition kinetics. The pink clay is composed of (1:1) clay type and kaolinite as the main component. The Mössbauer spectrum of pink clay shows Fe3+(α-Fe2O3) hematite, Fe2+, and Fe3+ with large Δ/2ξq of about 2.80 and 2.69 mm.s-1 respectively, related to iron silicates, most likely pyroxene, and a superparamagnetic Fe3+. Pink clay exhibits poor flow properties. The thermal behavior indicates a phase-transition between 400 - 600 ºC associated with the dehydroxylation of the pink clay system requiring ~300 kJ mol-1, being constant until the process reaches a conversion of ~50% when the energy is enhanced to ~530 kJ mol-1, concluding the whole dehydroxylation process (α=80%). Solid-state properties and characteristics found for the pink clay must be considered for the proper design of formulations. This type of clay shows unique pharmaceutical properties that can be favorably exploited by the cosmetic industry


Assuntos
Brasil/etnologia , Argila/classificação , Pós/análise , Caulim/farmacologia
2.
Braz. J. Pharm. Sci. (Online) ; 59: e22111, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439497

RESUMO

Abstract Chagas disease is a neglected parasitic disease caused by Trypanosoma cruzi, whose treatment has remained unsatisfactory for over 50 years, given that it is limited to two drugs. Benznidazole (BZN) is an efficient antichagasic drug used as the first choice, although its poor water-solubility, irregular oral absorption, low efficacy in the chronic phase, and various associated adverse effects are limiting factors for treatment. Incorporating drugs with such characteristics into nanostructured lipid carriers (NLC) is a promising alternative to overcome these limiting obstacles, enhancing drug efficacy and bioavailability while reducing toxicity. Therefore, this study proposed NLC-BZN formulations in different compositions prepared by hot-melt homogenization followed by ultrasound, and the optimized formulation was characterized by FTIR, DRX, DSC, and thermogravimetry. Biological activities included in vitro membrane toxicity (red blood cells), fibroblast cell cytotoxicity, and trypanocidal activity against epimastigotes of the Colombian strain of T. cruzi. The optimized NLC-BZN had a small size (110 nm), negative zeta potential (-18.0 mV), and high encapsulation (1.64% of drug loading), as shown by infrared spectroscopy, X-ray diffraction, and thermal analysis. The NLC-BZN also promoted lower in vitro membrane toxicity (<3% hemolysis), and 50% cytotoxic concentration (CC50) for NLC-BZN in L929 fibroblast cells (110.7 µg/mL) was twice the value as the free BZN (51.3 µg/mL). Our findings showed that the NLC-BZN had higher trypanocidal activity than free BZN against the epimastigotes of the resistant Colombian strain, and this novel NLC-BZN formulation proved to be a promising tool in treating Chagas disease and considered suitable for oral and parenteral administration


Assuntos
Trypanosoma cruzi/isolamento & purificação , Difração de Raios X/instrumentação , Doença de Chagas/patologia , Doenças Negligenciadas/classificação , Doenças Parasitárias/patologia , Análise Espectral/instrumentação , Entorses e Distensões/classificação , Termogravimetria/métodos , Técnicas In Vitro/métodos , Preparações Farmacêuticas/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
3.
Braz. J. Pharm. Sci. (Online) ; 54(4): e17361, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1001561

RESUMO

All-trans retinoic acid (ATRA) has been studied for the treatment of cancer, including leukemia and breast cancer. This work aims to develop nanoemulsions (NE) loaded with a hydrophobic ion pair (HIP) of all-trans retinoic acid (ATRA) and a lipophilic amine, stearylamine (SA), and coated with hyaluronic acid (HA) to enhance anticancer activity and reducing toxicity. Blank NE was prepared by spontaneous emulsification and optimized prior to HIP incorporation. NE-ATRA was electrostatically coated with different concentrations of HA. Incorporation of ATRA-SA led to monodisperse NE with small size (129 ± 2 nm; IP 0.18 ± 0.005) and positive zeta potential (35.7 ± 1.0 mV). After coating with 0.5 mg/mL HA solution, the mean diameter slightly increased to 158 ± 5 nm and zeta potential became negative (-19.7 ± 1.2 mV). As expected, high encapsulation efficiency (near 100%) was obtained, confirmed by polarized light microscopy and infrared analysis. Formulations remained stable over 60 days and release of ATRA from NE was delayed after the hydrophilic HA-coating. HA-coated NE-ATRA was more cytotoxic than free ATRA for MDA-MB-231 and MCF-7 breast cancer cell lines, especially in the CD44 overexpressing cells. Blank coated formulations showed no cytotoxicity. These findings suggest that this easily-made HA-coated NE-ATRA formulation is a promising alternative for parenteral administration, thus improving the breast cancer therapy with this drug.


Assuntos
Tretinoína/análise , Neoplasias da Mama/tratamento farmacológico , Preparações Farmacêuticas/análise , Química Farmacêutica , Ácido Hialurônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA