Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros








Intervalo de ano
1.
Experimental Neurobiology ; : 42-53, 2022.
Artigo em Inglês | WPRIM | ID: wpr-924976

RESUMO

To explore the potential function of interleukin-13 (IL-13), lipopolysaccharide (LPS) or PBS as a control was unilaterally microinjected into striatum of rat brain. Seven days after LPS injection, there was a significant loss of neurons and microglial activation in the striatum, visualized by immunohistochemical staining against neuronal nuclei (NeuN) and the OX-42 (complement receptor type 3, CR3), respectively. In parallel, IL-13 immunoreactivity was increased as early as 3 days and sustained up to 7 days post LPS injection, compared to PBS-injected control and detected exclusively within microglia. Moreover, GFAP immunostaining and blood brain barrier (BBB) permeability evaluation showed the loss of astrocytes and disruption of BBB, respectively. By contrast, treatment with IL-13 neutralizing antibody (IL-13NA) protects NeuN + neurons against LPSinduced neurotoxicity in vivo . Accompanying neuroprotection, IL-13NA reduced loss of GFAP + astrocytes and damage of BBB in LPS-injected striatum. Intriguingly, treatment with IL-13NA produced neurotrophic factors (NTFs) on survived astrocytes in LPS-injected rat striatum. Taken together, the present study suggests that LPS induces expression of IL-13 on microglia, which contributes to neurodegeneration via damage on astrocytes and BBB disruption in the striatum in vivo.

2.
Journal of Korean Neurosurgical Society ; : 579-589, 2020.
Artigo | WPRIM | ID: wpr-833503

RESUMO

Objective@#: No optimum genetic rat Huntington model both neuropathological using an adeno-associated virus (AAV-2) vector vector has been reported to date. We investigated whether direct infection of an AAV2 encoding a fragment of mutant huntingtin (AV2-82Q) into the rat striatum was useful for optimizing the Huntington rat model. @*Methods@#: We prepared ten unilateral models by injecting AAV2-82Q into the right striatum, as well as ten bilateral models. In each group, five rats were assigned to either the 2×1012 genome copies (GC)/mL of AAV2-82Q (×1, low dose) or 2×1013 GC/mL of AAV2-82Q (×10, high dose) injection model. Ten unilateral and ten bilateral models injected with AAV-empty were also prepared as control groups. We performed cylinder and stepping tests 2, 4, 6, and 8 weeks after injection, tested EM48 positive mutant huntingtin aggregates. @*Results@#: The high dose of unilateral and bilateral AAV2-82Q model showed a greater decrease in performance on the stepping and cylinder tests. We also observed more prominent EM48-positive mutant huntingtin aggregates in the medium spiny neurons of the high dose of AAV2-82Q injected group. @*Conclusion@#: Based on the results from the present study, high dose of AAV2-82Q is the optimum titer for establishing a Huntington rat model. Delivery of high dose of human AAV2-82Q resulted in the manifestation of Huntington behaviors and optimum expression of the huntingtin protein in vivo.

3.
Experimental Neurobiology ; : 226-237, 2018.
Artigo em Inglês | WPRIM | ID: wpr-714905

RESUMO

An abnormal reorganization of the dentate gyrus and neurotoxic events are important phenotypes in the hippocampus of patients with temporal lobe epilepsy (TLE). The effects of morin, a bioflavonoid constituent of many herbs and fruits, on epileptic seizures have not yet been elucidated, though its beneficial effects, such as its anti-inflammatory and neuroprotective properties, are well-described in various neurodegenerative diseases. In the present study, we investigated whether treatment with morin hydrate (MH) can reduce the susceptibility to seizures, granule cell dispersion (GCD), mammalian target of rapamycin complex 1 (mTORC1) activity, and the increases in the levels of apoptotic molecules and inflammatory cytokines in the kainic acid (KA)-induced seizure mouse model. Our results showed that oral administration of MH could reduce susceptibility to seizures and lead to the inhibition of GCD and mTORC1 activity in the KA-treated hippocampus. Moreover, treatment with MH significantly reduced the increased levels of apoptotic signaling molecules and pro-inflammatory mediators in the KA-treated hippocampus compared with control mice, suggesting a neuroprotective role. Therefore, these results suggest that morin has a therapeutic potential against epilepsy through its abilities to inhibit GCD and neurotoxic events in the in vivo hippocampus.


Assuntos
Animais , Humanos , Camundongos , Administração Oral , Citocinas , Giro Denteado , Epilepsia , Epilepsia do Lobo Temporal , Frutas , Hipocampo , Ácido Caínico , Doenças Neurodegenerativas , Neuroproteção , Fenótipo , Convulsões , Sirolimo
4.
Experimental & Molecular Medicine ; : e298-2017.
Artigo em Inglês | WPRIM | ID: wpr-198932

RESUMO

The effects of capsaicin (CAP), a transient receptor potential vanilloid subtype 1 (TRPV1) agonist, were determined on nigrostriatal dopamine (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). The results showed that TRPV1 activation by CAP rescued nigrostriatal DA neurons, enhanced striatal DA functions and improved behavioral recovery in MPTP-treated mice. CAP neuroprotection was associated with reduced expression of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) and reactive oxygen species/reactive nitrogen species from activated microglia-derived NADPH oxidase, inducible nitric oxide synthase or reactive astrocyte-derived myeloidperoxidase. These beneficial effects of CAP were reversed by treatment with the TRPV1 antagonists capsazepine and iodo-resiniferatoxin, indicating TRPV1 involvement. This study demonstrates that TRPV1 activation by CAP protects nigrostriatal DA neurons via inhibition of glial activation-mediated oxidative stress and neuroinflammation in the MPTP mouse model of PD. These results suggest that CAP and its analogs may be beneficial therapeutic agents for the treatment of PD and other neurodegenerative disorders that are associated with neuroinflammation and glial activation-derived oxidative damage.


Assuntos
Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Capsaicina , Citocinas , Dopamina , Neurônios Dopaminérgicos , NADPH Oxidases , Necrose , Doenças Neurodegenerativas , Neurônios , Neuroproteção , Óxido Nítrico Sintase Tipo II , Nitrogênio , Estresse Oxidativo , Oxigênio , Doença de Parkinson
5.
Experimental Neurobiology ; : 147-155, 2016.
Artigo em Inglês | WPRIM | ID: wpr-78641

RESUMO

Although accumulating evidence suggests that microglia-mediated neuroinflammation may be crucial for the initiation and progression of Parkinson's disease (PD), and that the control of neuroinflammation may be a useful strategy for preventing the degeneration of nigrostriatal dopaminergic (DA) projections in the adult brain, it is still unclear what kinds of endogenous biomolecules initiate microglial activation, consequently resulting in neurodegeneration. Recently, we reported that the increase in the levels of prothrombin kringle-2 (pKr-2), which is a domain of prothrombin that is generated by active thrombin, can lead to disruption of the nigrostriatal DA projection. This disruption is mediated by neurotoxic inflammatory events via the induction of microglial Toll-like receptor 4 (TLR4) in vivo , thereby resulting in less neurotoxicity in TLR4-deficient mice. Moreover, inhibition of microglial activation following minocycline treatment, which has anti-inflammatory activity, protects DA neurons from pKr-2-induced neurotoxicity in the substantia nigra (SN) in vivo. We also found that the levels of pKr-2 and microglial TLR4 were significantly increased in the SN of PD patients compared to those of age-matched controls. These observations suggest that there may be a correlation between pKr-2 and microglial TLR4 in the initiation and progression of PD, and that inhibition of pKr-2-induced microglial activation may be protective against the degeneration of the nigrostriatal DA system in vivo . To describe the significance of pKr-2 overexpression, which may have a role in the pathogenesis of PD, we have reviewed the mechanisms of pKr-2-induced microglial activation, which results in neurodegeneration in the SN of the adult brain.


Assuntos
Adulto , Animais , Humanos , Camundongos , Encéfalo , Microglia , Minociclina , Neurônios , Doença de Parkinson , Protrombina , Substância Negra , Trombina , Receptor 4 Toll-Like
6.
Experimental & Molecular Medicine ; : e205-2016.
Artigo em Inglês | WPRIM | ID: wpr-147098

RESUMO

The cannabinoid (CB2) receptor type 2 has been proposed to prevent the degeneration of dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. However, the mechanisms underlying CB2 receptor-mediated neuroprotection in MPTP mice have not been elucidated. The mechanisms underlying CB2 receptor-mediated neuroprotection of dopamine neurons in the substantia nigra (SN) were evaluated in the MPTP mouse model of Parkinson's disease (PD) by immunohistochemical staining (tyrosine hydroxylase, macrophage Ag complex-1, glial fibrillary acidic protein, myeloperoxidase (MPO), and CD3 and CD68), real-time PCR and a fluorescein isothiocyanate-labeled albumin assay. Treatment with the selective CB2 receptor agonist JWH-133 (10 μg kg⁻¹, intraperitoneal (i.p.)) prevented MPTP-induced degeneration of dopamine neurons in the SN and of their fibers in the striatum. This JWH-133-mediated neuroprotection was associated with the suppression of blood-brain barrier (BBB) damage, astroglial MPO expression, infiltration of peripheral immune cells and production of inducible nitric oxide synthase, proinflammatory cytokines and chemokines by activated microglia. The effects of JWH-133 were mimicked by the non-selective cannabinoid receptor WIN55,212 (10 μg kg⁻¹, i.p.). The observed neuroprotection and inhibition of glial-mediated neurotoxic events were reversed upon treatment with the selective CB2 receptor antagonist AM630, confirming the involvement of the CB2 receptor. Our results suggest that targeting the cannabinoid system may be beneficial for the treatment of neurodegenerative diseases, such as PD, that are associated with glial activation, BBB disruption and peripheral immune cell infiltration.


Assuntos
Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Barreira Hematoencefálica , Quimiocinas , Citocinas , Dopamina , Neurônios Dopaminérgicos , Fluoresceína , Proteína Glial Fibrilar Ácida , Macrófagos , Microglia , Doenças Neurodegenerativas , Neuroproteção , Óxido Nítrico Sintase Tipo II , Doença de Parkinson , Peroxidase , Reação em Cadeia da Polimerase em Tempo Real , Receptor CB2 de Canabinoide , Receptores de Canabinoides , Substância Negra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA