RESUMO
The skin injury healing process involves the main phases of homoeostasis, inflammation, proliferation, and remodeling. The present study aimed to analyze the effects of low-level laser therapy (LLLT) on hematological dynamics, oxidative stress markers, and its relation with tissue healing following skin injury. Wistar rats were divided into control, sham, skin injury, and skin injury LLLT. The biochemical and morphological analyses were performed in the inflammatory (1 and 3 days) and regenerative phases (7, 14, and 21 days) following injury. The skin injury was performed in the dorsal region, between the intrascapular lines, using a surgical punch. LLLT (Al-Ga-In-P, λ=660 nm, energy density of 20 J/cm2, 30 mW power, and a time of 40 s) was applied at the area immediately after injury and on every following day according to the experimental subgroups. LLLT maintained hematocrit and hemoglobin levels until the 3rd day of treatment. Surprisingly, LLLT increased total leukocytes levels compared to control until the 3rd day. The effects of LLLT on mitochondrial activity were demonstrated by the significant increase in MTT levels in both inflammatory and regenerative phases (from the 1st to the 7th day), but only when associated with skin injury. The results indicated that LLLT modulated the inflammatory response intensity and accelerated skin tissue healing by a mechanism that involved oxidative damage reduction mostly at early stages of skin healing (inflammatory phase).
Assuntos
Animais , Ratos , Terapia com Luz de Baixa Intensidade , Terapia a Laser , Cicatrização , Ratos Wistar , Estresse OxidativoRESUMO
Guarana (Paullinia cupana) is habitually ingested by people in the Amazon region and is a key ingredient in various energy drinks consumed worldwide. Extension in longevity and low prevalence of chronic age-related diseases have been associated to habitual intake of guarana. Anti-aging potential of guarana was also demonstrated in Caenorhabditis elegans; however, the mechanisms involved in its effects are not clear. Herein, we investigated the putative pathways that regulate the effects of guarana ethanolic extract (GEE) on lifespan using C. elegans. The major known longevity pathways were analyzed through mutant worms and RT-qPCR assay (DAF-2, DAF-16, SKN-1, SIR-2.1, HSF-1). The possible involvement of purinergic signaling was also investigated. This study demonstrated that GEE acts through antioxidant activity, DAF-16, HSF-1, and SKN-1 pathways, and human adenosine receptor ortholog (ADOR-1) to extend lifespan. GEE also downregulated skn-1, daf-16, sir-2.1 and hsp-16.2 in 9-day-old C. elegans, which might reflect less need to activate these protective genes due to direct antioxidant effects. Our results contribute to the comprehension of guarana effects in vivo, which might be helpful to prevent or treat aging-associated disorders, and also suggest purinergic signaling as a plausible therapeutic target for longevity studies.
Assuntos
Animais , Extratos Vegetais/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Paullinia/química , Antioxidantes/farmacologia , Fatores de Tempo , Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Longevidade/efeitos dos fármacos , Antioxidantes/isolamento & purificaçãoRESUMO
When exercises are done in intense or exhaustive modes, several acute biochemical mechanisms are triggered. The use of cryotherapy as cold-water immersion is largely used to accelerate the process of muscular recovery based on its anti-inflammatory and analgesic properties. The present study aimed to study the biochemical effects of cold-water immersion treatment in mice submitted to exercise-induced exhaustion. Swiss albino mice were divided into 4 treatment groups: control, cold-water immersion (CWI), swimming exhaustive protocol (SEP), and SEP+CWI. Treatment groups were subdivided into times of analysis: 0, 1, 3, and 5 days. Exhaustion groups were submitted to one SEP session, and the CWI groups submitted to one immersion session (12 min at 12°C) every 24 h. Reactive species production, inflammatory, cell viability, and antioxidant status were assessed. The SEP+CWI group showed a decrease in inflammatory damage biomarkers, and reactive species production, and presented increased cell viability compared to the SEP group. Furthermore, CWI increased acetylcholinesterase activity in the first two sessions. The present study showed that CWI was an effective treatment after exercise-induced muscle damage. It enhanced anti-inflammatory response, decreased reactive species production, increased cell viability, and promoted redox balance, which could decrease the time for the recovery process.
Assuntos
Animais , Masculino , Coelhos , Condicionamento Físico Animal/efeitos adversos , Condicionamento Físico Animal/fisiologia , Crioterapia/métodos , Músculo Esquelético/fisiopatologia , Músculo Esquelético/lesões , Imersão/fisiopatologia , Acetilcolinesterase/análise , Natação/lesões , Tiazóis , Fatores de Tempo , Sobrevivência Celular/fisiologia , Reprodutibilidade dos Testes , Espécies Reativas de Oxigênio/análise , Temperatura Baixa , Fluoresceínas/análise , Miosite/prevenção & controle , Antioxidantes/análiseRESUMO
Improving overall health and quality of life, preventing diseases and increasing life expectancy are key concerns in the field of public health. The search for antioxidants that can inhibit oxidative damage in cells has received a lot of attention. Rosmarinus officinalis L. represents an exceptionally rich source of bioactive compounds with pharmacological properties. In the present study, we explored the effects of the ethanolic extract of R. officinalis (eeRo) on stress resistance and longevity using the non-parasitic nematode Caenorhabditis elegans as a model. We report for the first time that eeRo increased resistance against oxidative and thermal stress and extended C. elegans longevity in an insulin/IGF signaling pathway-dependent manner. These data emphasize the eeRo beneficial effects on C. elegans under stress.
Assuntos
Animais , Caenorhabditis elegans/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Rosmarinus/química , Estresse Fisiológico/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Ligação a DNA/efeitos dos fármacos , Fatores de Transcrição Forkhead/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/efeitos dos fármacosRESUMO
Undernutrition of dams and pups disrupts the retrieval efficiency of mothers. However, if the mothers are assessed in their home cages, they spend more time with their litters. In the present study the effect of test conditions on pup retrieval behavior of mothers receiving a 25 percent (well-nourished group) and 8 percent casein diet (undernourished group) was examined. In agreement with previous studies, undernourished mothers spent more time with their litters than well-nourished dams as lactation proceeded. Pup retrieval behavior varied with test conditions. In the first experiment, the maternal behavior of dams was assessed by the standard procedure (pups were separated from their mother and scattered over the floor of the home cage). The mother was then returned and the number of retrieved pups was recorded. From day 3 to 8, the retrieval efficiency of undernourished dams decreased, while the retrieval efficiency of well-nourished mothers did not vary. In the second experiment, mothers were subjected to a single retrieval test (on day 9 of lactation) using the procedure described for experiment 1. No difference between well-nourished and undernourished mothers was observed. In the third experiment, seven-day-old pups were separated from the mothers and returned individually to a clean home cage. Dietary treatment did not affect the retrieval efficiency. However, undernourished dams reconstructed the nest more slowly than did well-nourished dams. Taken together, these results suggest that pup retrieval behavior of the undernourished mother is not impaired by dietary restriction when the maternal environment is disturbed minimally