Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Immune Network ; : e7-2021.
Artigo em Inglês | WPRIM | ID: wpr-874617

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 has severely impacted global health and economy. There is currently no effective approved treatment for COVID-19; although vaccines have been granted emergency use authorization in several countries, they are currently only administered to high-risk individuals, thereby leaving a gap in virus control measures. The scientific and clinical communities and drug manufacturers have collaborated to speed up the discovery of potential therapies for COVID-19 by taking advantage of currently approved drugs as well as investigatory agents in clinical trials. In this review, we stratified some of these candidates based on their potential targets in the progression of COVID-19 and discuss some of the results of ongoing clinical evaluations

2.
The Korean Journal of Physiology and Pharmacology ; : 105-109, 2015.
Artigo em Inglês | WPRIM | ID: wpr-727819

RESUMO

NgR1, a Nogo receptor, is involved in inhibition of neurite outgrowth and axonal regeneration and regulation of synaptic plasticity. P19 embryonal carcinoma cells were induced to differentiate into neuron-like cells using all trans-retinoic acid and the presence and/or function of cellular molecules, such as NgR1, NMDA receptors and STAT3, were examined. Neuronally differentiated P19 cells expressed the mRNA and protein of NgR1, which could stimulate the phosphorylation of STAT3 when activated by Nogo-P4 peptide, an active segment of Nogo-66. During the whole period of differentiation, mRNAs of all of the NMDA receptor subtypes tested (NR1, NR2A-2D) were consistently expressed, which meant that neuronally differentiated P19 cells maintained some characteristics of neurons, especially central nervous system neurons. Our results suggests that neuronally differentiated P19 cells expressing NgR1 may be an efficient and convenient in vitro model for studying the molecular mechanism of cellular events that involve NgR1 and its binding partners, and for screening compounds that activate or inhibit NgR1.


Assuntos
Axônios , Sistema Nervoso Central , Células-Tronco de Carcinoma Embrionário , Programas de Rastreamento , N-Metilaspartato , Neuritos , Neurônios , Fosforilação , Plásticos , Receptores de N-Metil-D-Aspartato , Regeneração , RNA Mensageiro , Tretinoína
3.
Toxicological Research ; : 33-38, 2012.
Artigo em Inglês | WPRIM | ID: wpr-21402

RESUMO

In this study, we investigated the effect of methanolic extract isolated from the root of Lycoris aurea (LA) on the growth of cancer cells and the tube formation activity of endothelial cells. Various cancer cells were treated with LA at doses of 0.3, 1, 3, 10 or 30 microg/ml and LA significantly suppressed the growth of several cancer cell lines, including ACHN, HCT-15, K-562, MCF-7, PC-3 and SK-OV-3, in a dose-dependent manner. We also found that LA induced cell cycle arrest at G2/M phase in ACHN renal cell adenocarcinoma cells. Further study demonstrated that LA concentration-dependently inhibited the tube formation, which is a widely used in vitro model of reorganization stage of angiogenesis, in human umbilical vein endothelial cells. Collectively, these results show that LA inhibits the growth of cancer cells and tube formation of endothelial cells and the growth-inhibitory effect of LA might be mediated, at least in part, by blocking cell cycle progression.


Assuntos
Carcinoma de Células Renais , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Células Endoteliais , Células Endoteliais da Veia Umbilical Humana , Lycoris , Metanol
4.
Experimental & Molecular Medicine ; : 574-581, 2008.
Artigo em Inglês | WPRIM | ID: wpr-84644

RESUMO

In light of the anti-inflammatory properties of histone deacetylase (HDAC) inhibitors, such as suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), we examined a new HDAC inhibitor KBH-A42 for its anti-inflammatory activities. KBH-A42 showed noteworthy anti-inflammatory properties in vitro via suppression of the production of TNF-alpha, a proinflammatory cytokine, and nitric oxide (NO), a proinflammatory effector molecule, in LPS-stimulated RAW264.7 cells and peritoneal macrophages. It also inhibited TNF-alpha production in vivo as demonstrated in a LPS-induced mouse endotoxemia model. The levels of TNF-alpha, IL-1beta, IL-6 and iNOS mRNAs determined by RT-PCR propose that the inhibition of these pro-inflammatory mediators by KBH-A42 resulted from inhibiting expression of these genes. However, the EMSA study to see the effect of KBH-A42 on the binding of NF-kappaB, a transcription factor, to a specific DNA sequence showed that the binding of NF-kappaB to DNA was not changed regardless of increasing the concentration of KBH-A42 in the presence and absence of LPS stimulation. Interestingly, DNA binding of another transcription factor AP-1 dose-dependently increased by KBH-A42. KBH-A42 differentially regulated the phosphorylation of MAP kinases. While the phosphprylation of ERK1/2 and SAPK/JNK was not affected by KBH-A42, the phosphorylation of p38 decreased by KBH-A42. These results showed that KBH-A42 inhibits production of proinflammatory cytokines in macrophages by decreasing their mRNA levels, and p38 kinase is involved in the KBH-A42-mediated inhibition.


Assuntos
Animais , Camundongos , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/sangue , Ensaio de Desvio de Mobilidade Eletroforética , Endotoxemia/sangue , Inibidores Enzimáticos/química , Histona Desacetilases/antagonistas & inibidores , Ácidos Hidroxâmicos/química , Interleucina-1beta/genética , Interleucina-6/genética , Macrófagos/citologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estrutura Molecular , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Fosforilação/efeitos dos fármacos , Piperidonas/química , Ligação Proteica/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA