Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros








Intervalo de ano
1.
Adv Rheumatol ; 61: 24, 2021. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1248668

RESUMO

Abstract Background: The Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene is a potential biomarker of vulnerability to pain. Thus, the present study aimed to investigate the association of this polymorphism with clinical and biopsychosocial factors in patients with chronic low back pain (CLBP). Methods: A total of 107 individuals with CLBP answered questionnaires that were validated and adapted for the Brazilian population, including the Brief Inventory of Pain, the Central Sensitization Inventory, the Roland Morris Disability Questionnaire, the Tampa Scale for Kinesiophobia, the Pain Catastrophizing Scale, the Survey of Pain Attitude-Brief, and the Hospital Anxiety and Depression Scale. All of the subjects were genotyped for the BDNF Val66Met polymorphism. Results: The sample showed moderate scores of disability, central sensitization, and kinesiophobia, in addition to mild anxiety, hopelessness, and ruminant thoughts. No significant association was observed between the Val66Met polymorphism and the variables analyzed. Besides, there was no relationship between the BDNF Val66Met polymorphism with CSI, catastrophization, or disabilities that were generated by CLBP. Conclusions: The results showed that the Val66Met polymorphism of the BDNF gene was not associated with clinical and biopsychosocial characteristics of CLBP in the sample studied.

2.
J. venom. anim. toxins incl. trop. dis ; 27: e20210001, 2021. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484769

RESUMO

Phα1ß is a neurotoxin purified from spider venom that acts as a high-voltage-activated (HVA) calcium channel blocker. This spider peptide has shown a high selectivity for N-type HVA calcium channels (NVACC) and an analgesic effect in several animal models of pain. Its activity was associated with a reduction in calcium transients, glutamate release, and reactive oxygen species production from the spinal cord tissue and dorsal ganglia root (DRG) in rats and mice. It has been reported that intrathecal (i.t.) administration of Phα1ß to treat chronic pain reverted opioid tolerance with a safer profile than ω-conotoxin MVIIA, a highly selective NVACC blocker. Following a recent development of recombinant Phα1ß (CTK 01512-2), a new molecular target, TRPA1, the structural arrangement of disulphide bridges, and an effect on glial plasticity have been identified. CTK 01512-2 reproduced the antinociceptive effects of the native toxin not only after the intrathecal but also after the intravenous administration. Herein, we review the Phα1ß antinociceptive activity in the most relevant pain models and its mechanisms of action, highlighting the impact of CTK 01512-2 synthesis and its potential for multimodal analgesia.


Assuntos
Analgésicos/efeitos adversos , Dor , Espécies Reativas de Oxigênio , Neurotoxinas/isolamento & purificação , Peptídeos/isolamento & purificação
3.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484774

RESUMO

Abstract Ph1 is a neurotoxin purified from spider venom that acts as a high-voltage-activated (HVA) calcium channel blocker. This spider peptide has shown a high selectivity for N-type HVA calcium channels (NVACC) and an analgesic effect in several animal models of pain. Its activity was associated with a reduction in calcium transients, glutamate release, and reactive oxygen species production from the spinal cord tissue and dorsal ganglia root (DRG) in rats and mice. It has been reported that intrathecal (i.t.) administration of Ph1 to treat chronic pain reverted opioid tolerance with a safer profile than -conotoxin MVIIA, a highly selective NVACC blocker. Following a recent development of recombinant Ph1 (CTK 01512-2), a new molecular target, TRPA1, the structural arrangement of disulphide bridges, and an effect on glial plasticity have been identified. CTK 01512-2 reproduced the antinociceptive effects of the native toxin not only after the intrathecal but also after the intravenous administration. Herein, we review the Ph1 antinociceptive activity in the most relevant pain models and its mechanisms of action, highlighting the impact of CTK 01512-2 synthesis and its potential for multimodal analgesia.

4.
J. venom. anim. toxins incl. trop. dis ; 27: e20210001, 2021. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1351017

RESUMO

Phα1ß is a neurotoxin purified from spider venom that acts as a high-voltage-activated (HVA) calcium channel blocker. This spider peptide has shown a high selectivity for N-type HVA calcium channels (NVACC) and an analgesic effect in several animal models of pain. Its activity was associated with a reduction in calcium transients, glutamate release, and reactive oxygen species production from the spinal cord tissue and dorsal ganglia root (DRG) in rats and mice. It has been reported that intrathecal (i.t.) administration of Phα1ß to treat chronic pain reverted opioid tolerance with a safer profile than ω-conotoxin MVIIA, a highly selective NVACC blocker. Following a recent development of recombinant Phα1ß (CTK 01512-2), a new molecular target, TRPA1, the structural arrangement of disulphide bridges, and an effect on glial plasticity have been identified. CTK 01512-2 reproduced the antinociceptive effects of the native toxin not only after the intrathecal but also after the intravenous administration. Herein, we review the Phα1ß antinociceptive activity in the most relevant pain models and its mechanisms of action, highlighting the impact of CTK 01512-2 synthesis and its potential for multimodal analgesia.


Assuntos
Dor , Peptídeos/isolamento & purificação , Espécies Reativas de Oxigênio , Analgésicos/efeitos adversos , Neurotoxinas/isolamento & purificação
5.
Adv Rheumatol ; 60: 39, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1130786

RESUMO

Abstract Background: Fibromyalgia (FM) is a musculoskeletal chronic pain syndrome that impacts negatively patient's daily lives. Its pathogenesis is characterized by a complex relationship between biological and psychosocial factors not fully understood yet. Pain catastrophizing is associated with FM and is an important predictor of outcomes. This study aimed to answer two questions: (i) whether the allele and genotype frequencies of BDNF Val66Met (rs6265) polymorphism differs between FM patients and healthy controls (HC); and (ii) if the BDNF Val66Met polymorphism is a factor that predicts pain catastrophizing in FM. Methods: In a cross-sectional design, 108 FM patients and 108 HC were included. FM patients responded to the Brazilian Portuguese version of the Pain Catastrophizing Scale (BP-PCS) to assess pain catastrophizing, as well as other validated tools for anxiety (The State-Trait Anxiety Inventory - STAI), depression (Beck Depression Inventory II -BDI-II) and functional aspects (Fibromyalgia Impact Questionnaire - FIQ; Central Sensitization Inventory validated and adapted for Brazilian population - CSI-BP; Pittsburgh Sleep Quality Index - PSQI; and Resilience Scale). All subjects were genotyped for the BDNF Val66Met polymorphism. Results: Val allele was significantly more frequent in FM patients compared to the control group (p < 0.05). Also, FM patients with Val/Val genotype showed more pain catastrophizing thoughts, and this genotype was significantly associated with magnification and rumination dimensions of BP-PCS (p < 0.05). Furthermore, there were significant differences in levels of anxiety and symptoms of depression, years of education, and the functional situation between the FM and control groups. Conclusions: The findings show an association of BDNF Val66Met polymorphism with pain catastrophizing in FM, which opens new avenues to comprehend the interplay between molecular genetic characteristics and neuroplasticity mechanisms underpinning FM.(AU)


Assuntos
Humanos , Fibromialgia/fisiopatologia , Polimorfismo de Nucleotídeo Único , Catastrofização , Estudos Transversais , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA