Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
1.
Chinese Medical Journal ; (24): 1075-1081, 2011.
Artigo em Inglês | WPRIM | ID: wpr-239891

RESUMO

<p><b>BACKGROUND</b>Molecular analysis of neovascularization related genes by time course in response to ischemia has not been described in the context of aging. We aimed to provide a progressively deeper understanding of how aging compromises neovascularization.</p><p><b>METHODS</b>Young (3-month) and old (18-month) C57Bl mice were subjected to left hindlimb ischemia. Necrosis score was evaluated in calf muscles. Calf muscles, peripheral blood, bone marrow were harvested at different time points. The expressions of matrix metalloproteiniase-9 (MMP9), endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), stromal derived growth factor-1 (SDF1), hypoxia inducible factor-1α (HIF1α), VEGF receptor-1 (Flt1), VEGF receptor-2 (Flk1), angiopoietin-1 (Ang1), CD133, CD26 were detected by RT-PCR or Western blotting. White blood cells were counted in the peripheral blood. Gene expression data were compared by two-way analysis of variance.</p><p><b>RESULTS</b>MMP9, HIF-1α and SDF-1 were more upregulated during acute ischemia in old vs. young mice, reflecting increased ischemia in aging mice. However VEGF and eNOS exhibited lower expression in old vs. young mice, despite greater ischemia intensity. Ang1 and Flk1 showed similar expression in old vs. young mice. MMP9 peaked earlier in peripheral blood in young vs. old mice. Concurrent decreasing CD26 and increasing CD133 expression in aging bone marrow suggest aging impairs progenitor cell mobilization,</p><p><b>CONCLUSIONS</b>Our results indicate that a complex array of defects occur with aging that interfere with optimal neovascularization. These include potential impaired mobilization of progenitor cells to ischemic tissue, decreased levels of eNOS and VEGF and delayed responses to ischemia.</p>


Assuntos
Animais , Feminino , Camundongos , Envelhecimento , Fisiologia , Western Blotting , Quimiocina CXCL12 , Metabolismo , Membro Posterior , Metabolismo , Patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Metabolismo , Isquemia , Metabolismo , Metaloproteinase 9 da Matriz , Metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético , Metabolismo , Patologia , Necrose , Metabolismo , Patologia , Neovascularização Patológica , Metabolismo , Patologia , Fator A de Crescimento do Endotélio Vascular , Genética , Metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Genética , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA