Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Adicionar filtros








Intervalo de ano
1.
International Journal of Oral Biology ; : 30-38, 2021.
Artigo em Inglês | WPRIM | ID: wpr-898706

RESUMO

Cudraxanthone D (CD) is a natural xanthone compound derived from the root barks of Cudrania tricuspidata . However, the biological functions of CD in human metabolism have been rarely reported until now. Autophagy is the self-degradation process related to cancer cell metastasis. Here, we elucidated the effects of CD on human oral squamous cell carcinoma (OSCC) cells’ metastatic ability. We confirmed that CD effectively decreased the proliferation and viability of SCC25 human OSCC cells in time- and dose-dependent manners. Also, the metastasis phenotype of the SCC25 cell (migration, invasion, and epithelial–mesenchymal transition [EMT]) was inhibited by CD. To further investigate the mechanism by which CD inhibited the metastatic capacity, we detected the relationship between EMT and autophagy in the SCC25 cells. The results revealed that CD inhibited the metastasis of the SCC25 cells by attenuating autophagy. Thus, our findings produced a potential novel agent for the treatment of human OSCC metastasis.

2.
International Journal of Oral Biology ; : 30-38, 2021.
Artigo em Inglês | WPRIM | ID: wpr-891002

RESUMO

Cudraxanthone D (CD) is a natural xanthone compound derived from the root barks of Cudrania tricuspidata . However, the biological functions of CD in human metabolism have been rarely reported until now. Autophagy is the self-degradation process related to cancer cell metastasis. Here, we elucidated the effects of CD on human oral squamous cell carcinoma (OSCC) cells’ metastatic ability. We confirmed that CD effectively decreased the proliferation and viability of SCC25 human OSCC cells in time- and dose-dependent manners. Also, the metastasis phenotype of the SCC25 cell (migration, invasion, and epithelial–mesenchymal transition [EMT]) was inhibited by CD. To further investigate the mechanism by which CD inhibited the metastatic capacity, we detected the relationship between EMT and autophagy in the SCC25 cells. The results revealed that CD inhibited the metastasis of the SCC25 cells by attenuating autophagy. Thus, our findings produced a potential novel agent for the treatment of human OSCC metastasis.

3.
International Journal of Oral Biology ; : 89-95, 2019.
Artigo em Inglês | WPRIM | ID: wpr-764046

RESUMO

Piperlongumine (PL) is a natural product found in long pepper (Piper longum). The pharmacological effects of PL are well known, and it has been used for pain, hepatoprotection, and asthma in Oriental medicine. No studies have examined the effects of PL on bone tissue or bone-related diseases, including osteoporosis. The current study investigated for the first time the inhibitory effects of PL on osteoclast differentiation, bone resorption, and osteoclastogenesis-related factors in RAW264.7 macrophages stimulated by the receptor activator for nuclear factor-κB ligand (RANKL). Cytotoxicity was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and osteoclast differentiation and bone resorption were confirmed by tartrate-resistant acid phosphatase (TRAP) staining and pit formation analysis. Osteoclast differentiation factors were confirmed by western blotting. PL exhibited toxicity in RAW264.7 macrophages, inhibiting osteoclast formation and bone resorption, in addition to inhibiting the expression of osteoclastogenesis-related factors, such as tumor necrosis factor receptor-associated factor 6 (TRAF6), c-Fos, and NFATc1, in RANKL-stimulated RAW264.7 macrophages. These findings suggest that PL is suitable for the treatment of osteoporosis, and it serves as a potential therapeutic agent for various bone diseases.


Assuntos
Fosfatase Ácida , Asma , Western Blotting , Osso e Ossos , Doenças Ósseas , Reabsorção Óssea , Macrófagos , Medicina Tradicional do Leste Asiático , Osteoclastos , Osteoporose , Piper , Ligante RANK , Fator de Necrose Tumoral alfa
4.
International Journal of Oral Biology ; : 69-76, 2018.
Artigo em Inglês | WPRIM | ID: wpr-740069

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common type of oral malignancy. Numerous therapies have been proposed for its cure. Research is continually being conducted to develop new forms of treatment as current therapies are associated with numerous side-effects. Luteolin, a common dietary flavonoid, has been demonstrated to possess strong anti-cancer activity against various human cancer cell lines. Nevertheless, research into luteolin-based anticancer activity against oral cancer remains scarce. Thus, the objective of this study was to assess the effect of luteolin as an anti-cancer agent. After treatment with luteolin, Ca9-22 and CAL-27 oral cancer cells showed condensed nuclei and enhanced apoptotic rate with evidence of mitochondria-mediated apoptosis. Epithelialmesenchymal transition (EMT) is closely related to tumor migration and invasion. Luteolin suppressed cancer cell invasion and migration in the current study. Elevated expression of E-cadherin, an adherens junction protein, was evident in both cell lines after luteolin treatment. Luteolin also significantly inhibited transcription factors (i.e., N-cadherin, Slug, Snail, Twist, and ZEB-1) that regulated expression of tumor suppressors such as E-cadherin based on Western blot analysis and quantitative PCR. Thus, luteolin could induce mitochondrial apoptosis and inhibit cancer cell invasion and migration by suppressing EMT-induced transcription factors.


Assuntos
Humanos , Junções Aderentes , Apoptose , Western Blotting , Caderinas , Carcinoma de Células Escamosas , Linhagem Celular , Células Epiteliais , Transição Epitelial-Mesenquimal , Gastrópodes , Luteolina , Neoplasias Bucais , Reação em Cadeia da Polimerase , Caramujos , Fatores de Transcrição
5.
Journal of Dental Anesthesia and Pain Medicine ; : 21-28, 2017.
Artigo em Inglês | WPRIM | ID: wpr-76818

RESUMO

BACKGROUND: The skin consists of tightly connected keratinocytes, and prevents extensive water loss while simultaneously protecting against the entry of microbial pathogens. Excessive cellular levels of reactive oxygen species can induce cell apoptosis and also damage skin integrity. Propofol (2,6-diisopropylphenol) has antioxidant properties. In this study, we investigated how propofol influences intracellular autophagy and apoptotic cell death induced by oxidative stress in human keratinocytes. METHOD: The following groups were used for experimentation: control, cells were incubated under normoxia (5% CO₂, 21% O₂, and 74% N₂) without propofol; hydrogen peroxide (H₂O₂), cells were exposed to H₂O₂ (300 µM) for 2 h; propofol preconditioning (PPC)/H₂O₂, cells pretreated with propofol (100 µM) for 2 h were exposed to H₂O₂; and 3-methyladenine (3-MA)/PPC/H₂O₂, cells pretreated with 3-MA (1 mM) for 1 h and propofol were exposed to H₂O₂. Cell viability, apoptosis, and migration capability were evaluated. Relation to autophagy was detected by western blot analysis. RESULTS: Cell viability decreased significantly in the H₂O₂ group compared to that in the control group and was improved by propofol preconditioning. Propofol preconditioning effectively decreased H₂O₂-induced cell apoptosis and increased cell migration. However, pretreatment with 3-MA inhibited the protective effect of propofol on cell apoptosis. Autophagy was activated in the PPC/H₂O₂ group compared to that in the H₂O₂ group as demonstrated by western blot analysis and autophagosome staining. CONCLUSION: The results suggest that propofol preconditioning induces an endogenous cellular protective effect in human keratinocytes against oxidative stress through the activation of signaling pathways related to autophagy.


Assuntos
Humanos , Apoptose , Autofagia , Western Blotting , Morte Celular , Movimento Celular , Sobrevivência Celular , Peróxido de Hidrogênio , Queratinócitos , Métodos , Estresse Oxidativo , Propofol , Espécies Reativas de Oxigênio , Pele , Água
6.
Journal of Dental Anesthesia and Pain Medicine ; : 37-46, 2017.
Artigo em Inglês | WPRIM | ID: wpr-76816

RESUMO

BACKGROUND: In oxidative stress, reactive oxygen species (ROS) production contributes to cellular dysfunction and initiates the apoptotic cascade. Autophagy is considered the mechanism that decreases ROS concentration and oxidative damage. Propofol shows antioxidant properties, but the mechanisms underlying the effect of propofol preconditioning (PPC) on oxidative injury remain unclear. Therefore, we investigated whether PPC protects against cell damage from hydrogen peroxide (H₂O₂)-induced oxidative stress and influences cellular autophagy. METHOD: COS-7 cells were randomly divided into the following groups: control, cells were incubated in normoxia (5% CO₂, 21% O₂, and 74% N₂) for 24 h without propofol; H₂O₂, cells were exposed to H₂O₂ (400 µM) for 2 h; PPC + H₂O₂, cells pretreated with propofol were exposed to H₂O₂; and 3-methyladenine (3-MA) + PPC + H₂O₂, cells pretreated with 3-MA (1 mM) for 1 h and propofol were exposed to H₂O₂. Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide thiazolyl blue (MTT) reduction. Apoptosis was determined using Hoechst 33342 staining and fluorescence microscopy. The relationship between PPC and autophagy was detected using western blot analysis. RESULTS: Cell viability decreased more significantly in the H₂O₂ group than in the control group, but it was improved by PPC (100 µM). Pretreatment with propofol effectively decreased H₂O₂-induced COS-7 cell apoptosis. However, pretreatment with 3-MA inhibited the protective effect of propofol during apoptosis. Western blot analysis showed that the level of autophagy-related proteins was higher in the PPC + H₂O₂ group than that in the H2O2 group. CONCLUSION: PPC has a protective effect on H₂O₂-induced COS-7 cell apoptosis, which is mediated by autophagy activation.


Assuntos
Animais , Apoptose , Autofagia , Western Blotting , Sobrevivência Celular , Células COS , Peróxido de Hidrogênio , Métodos , Microscopia de Fluorescência , Estresse Oxidativo , Propofol , Espécies Reativas de Oxigênio
7.
International Journal of Oral Biology ; : 53-62, 2016.
Artigo em Inglês | WPRIM | ID: wpr-186478

RESUMO

In the present study, we evaluated the effect of CGM on osteogenic differentiation of cultured osteoblasts, and determined whether combination treatment with LLLT had synergistic effects on osteogenic differentiation. The results indicated that CGM promoted proliferation, differentiation, and mineralization of osteoblasts at the threshold concentration of 10 µg/ml; whereas, CGM showed cytotoxic properties at concentrations above 100 µg/ml. ALP activity and mineralization were increased at concentrations above 10 µg/ml. CGM in concentrations up to 10 µg/ml also increased the expression of osteoblast-activated factors including type I collagen, BMP-2, RUNX2, and Osterix. The CGM (50 µg/ml) and LLLT (80 mW for 15 sec) combination treatment group showed the highest proliferation levels, ALP activity, and mineralization ratios. The combination treatment also increased the levels of phosphorylated forms of p38, ATF2, PKD, ERK, and JNK. In addition, the osteoblast differentiation factors including type I collagen, BMP-2, RUNX2, and Osterix protein levels were clearly increased in the combination treatment group. These results suggested that the combination treatment of CGM and LLLT has synergistic effects on the differentiation and mineralization of osteoblastic cells.


Assuntos
Colágeno Tipo I , Gengiva , Terapia com Luz de Baixa Intensidade , Mineradores , Osteoblastos
8.
International Journal of Oral Biology ; : 1-8, 2016.
Artigo em Inglês | WPRIM | ID: wpr-32085

RESUMO

OSCC is currently the most common malignancy of the head and neck, affecting tens of thousands of patients per year worldwide. Natural flavonoids from plants are potential sources for novel anti-cancer drugs. Icariin is the active ingredient of flavonol glycoside, which is derived from the medical plant Herba Epimedii. A metabolite of icariin, icariside II exhibits a variety of pharmacological actions, including anti-rheumatic, anti-depressant, cardiovascular protective, and immunomodulatory functions. However, the exact mechanism causing the apoptosis-inducing effect of icariside II in OSCC is still not fully understood. In the present study, we assessed the anti-cancer effect of icariside II in OSCC cell lines by measuring its effect on cell viability, cell proliferation, and mitochondria membrane potential (MMP). Icariside II treatment of OSCC cells resulted in a dose- and time-dependent decrease in cell viability. Hoechst staining indicated apoptosis in icariside II-treated HSC cells. Icariside II inhibited cell proliferation and induced apoptosis in HSC cells, with significant increases in all present parameters in HSC-4 cells. The results clearly suggested that icariside II induced apoptosis via activation of intrinsic pathways and caspase cascades in HSC-4 cell lines. The collective findings of the study suggested that Icariside II is a potential treatment for OSCC; in addition, the data could provide a basis for the development of a novel anti-cancer strategy.


Assuntos
Humanos , Apoptose , Carcinoma de Células Escamosas , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Flavonoides , Cabeça , Potenciais da Membrana , Mitocôndrias , Pescoço , Plantas , Estimulação Elétrica Nervosa Transcutânea
9.
International Journal of Oral Biology ; : 51-61, 2015.
Artigo em Inglês | WPRIM | ID: wpr-221786

RESUMO

Shikonin, a major ingredient in the traditional Chinese herb Lithospermumerythrorhizon, exhibits multiple biological functions including antimicrobial, anti-inflammatory, and antitumor effects. It has recently been reported that shikonin displays antitumor properties in many cancers. This study was aimed to investigate whether shikonin could inhibit oral squamous carcinoma cell (OSCC) growth via mechanisms of apoptosis and cell cycle arrest. The effects of shikonin on the viability and growth of OSCC cell line, SCC25 cells were assessed by MTT assay and clonogenic assays, respectively. Hoechst staining and DNA electrophoresis indicated that the shikonin-treated SCC25 cells were undergoing apoptosis. Western blotting, immunocytochemistry, confocal microscopy, flow cytometry, MMP activity, and proteasome activity also supported the finding that shikonin induces apoptosis. Shikonin treatment of SCC25 cells resulted in a time- and dose-dependent decrease in cell viability, inhibition of cell growth, and increase in apoptotic cell death. The treated SCC25 cells showed several lines of apoptotic manifestation as follows: nuclear condensation; DNA fragmentation; reduced MMP and proteasome activity; decrease in DNA contents; release of cytochrome c into cytosol; translocation of AIF and DFF40 (CAD) onto the nuclei; a significant shift in Bax/Bcl-2 ratio; and activation of caspase-9, -7, -6, and -3, as well as PARP, lamin A/C, and DFF45 (ICAD). Shikonin treatment also resulted in down-regulation of the G1 cell cycle-related proteins and up-regulation of p27(KIP1). Taken together, our present findings demonstrate that shikonin strongly inhibits cell proliferation by modulating the expression of the G1 cell cycle-related proteins, and that it induces apoptosis via the proteasome, mitochondria, and caspase cascades in SCC25 cells.


Assuntos
Humanos , Apoptose , Povo Asiático , Western Blotting , Carcinoma de Células Escamosas , Caspase 9 , Pontos de Checagem do Ciclo Celular , Morte Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Citocromos c , Citosol , DNA , Fragmentação do DNA , Regulação para Baixo , Eletroforese , Citometria de Fluxo , Imuno-Histoquímica , Microscopia Confocal , Mitocôndrias , Complexo de Endopeptidases do Proteassoma , Língua , Regulação para Cima
10.
International Journal of Oral Biology ; : 85-91, 2015.
Artigo em Inglês | WPRIM | ID: wpr-104524

RESUMO

Quercetin is a natural flavonoid phytochemical that is extracted from various plants. Having an advantages due to its varied biological properties, such as anti-inflammatory, anti-viral, anti-oxidant, and anti-cancer effects, quercetin is used to treat many diseases. Recently, it has been reported that autophagy inhibition may play a key role in anti-cancer therapy. Therefore, in this study, we investigated the molecular mechanisms and anti-cancer effects of quercetin in human osteosarcoma cells via autophagy inhibition. We ascertained that quercetin inhibited cell proliferation and induced cell death, these process is demonstrated that apoptosis via the mitochondrial pathway and the caspase cascade. Quercetin also induced autophagy which was inhibited by 3-MA, autophagy inhibitor and the blockade of autophagy promoted the quercetin-induced apoptosis, confirming that autophagy is a pro-survival process. Thus, these findings demonstrate that quercetin is an effective anti-cancer agent, and the combination of quercetin and an autophagy inhibitor should enhance the effect of anti-cancer therapy.


Assuntos
Humanos , Apoptose , Autofagia , Morte Celular , Proliferação de Células , Osteossarcoma , Quercetina
11.
International Journal of Oral Biology ; : 193-199, 2014.
Artigo em Inglês | WPRIM | ID: wpr-149980

RESUMO

Fluoride has been accepted as an important material for oral health and is widely used to prevent dental caries in dentistry. However, its safety is still questioned by some. Autophagy has been implicated in cancer cell survival and death, and may play an important role in oral cancer. This study was undertaken to examine whether sodium fluoride (NaF) modulates autophagy in SCC25 human tongue squamous cell carcinoma cells. NaF demonstrated anticancer activity via autophagic and apoptotic cell death. Autophagic vacuoles were detectable using observed to form by monodansylcadaverine (MDC) and acridine orange (AO). Analysis of NaF-treated SCC25 cells for the presence of biochemical markers revealed direct effects on the conversion of LC-3II, degradation of p62/SQSTM1, cleavage formation of ATG5 and Beclin-1, and caspase activation. NaF-induced cell death was suppressed by the autophagy inhibitor 3-methyladenine (3-MA). NaF-induced autophagy was confirmed as a pro-death signal in SCC25 cells. These results implicate NaF as a novel anticancer compound for oral cancer therapy.


Assuntos
Humanos , Laranja de Acridina , Apoptose , Autofagia , Biomarcadores , Carcinoma de Células Escamosas , Morte Celular , Sobrevivência Celular , Cárie Dentária , Odontologia , Fluoretos , Neoplasias Bucais , Saúde Bucal , Fluoreto de Sódio , Língua , Vacúolos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA