Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
International Journal of Stem Cells ; : 281-292, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1000524

RESUMO

Background and Objectives@#Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (CM) hold greatpromise as a cellular source of CM for cardiac function restoration in ischemic heart disease. However, the use of animal-derived xenogeneic substances during the biomanufacturing of hiPSC-CM can induce inadvertent immune responses or chronic inflammation, followed by tumorigenicity. In this study, we aimed to reveal the effects of xenogeneic substances on the functional properties and potential immunogenicity of hiPSC-CM during differentiation, demonstrating the quality and safety of hiPSC-based cell therapy. @*Methods@#and Results: We successfully generated hiPSC-CM in the presence and absence of xenogeneic substances(xeno-containing (XC) and xeno-free (XF) conditions, respectively), and compared their characteristics, including the contractile functions and glycan profiles. Compared to XC-hiPSC-CM, XF-hiPSC-CM showed early onset of myocyte contractile beating and maturation, with a high expression of cardiac lineage-specific genes (ACTC1, TNNT2, and RYR2) by using MEA and RT-qPCR. We quantified N-glycolylneuraminic acid (Neu5Gc), a xenogeneic sialic acid, in hiPSC-CM using an indirect enzyme-linked immunosorbent assay and liquid chromatography-multiple reaction monitoring-mass spectrometry. Neu5Gc was incorporated into the glycans of hiPSC-CM during xeno-containing differentiation, whereas it was barely detected in XF-hiPSC-CM. @*Conclusions@#To the best of our knowledge, this is the first study to show that the electrophysiological function andglycan profiles of hiPSC-CM can be affected by the presence of xenogeneic substances during their differentiation and maturation. To ensure quality control and safety in hiPSC-based cell therapy, xenogeneic substances should be excluded from the biomanufacturing process.

2.
Laboratory Animal Research ; : 177-187, 2020.
Artigo | WPRIM | ID: wpr-836910

RESUMO

Human angiotensin-converting enzyme 2 (hACE2) has recently received a great attention due to it play a critical role as SARS-CoV receptor in the infection of human body. However, no further analysis for gene regulation has been performed in target tissues of model mice during hACE2 overproduction. To characterize changes in global gene expression in the hearts and kidneys of rtTA/hACE2 double transgenic (dTg) mice in response to hACE2 overexpression, total RNA extracted from these tissues from dTg mice after doxycycline (Dox) treatment was hybridized to oligonucleotide microarrays. Briefly, dTg mice were generated by cross-mating pα-MHC/rtTA Tg mice with pTRE/hACE2 Tg mice. The expression level of hACE2 protein was determined to be high in hearts, kidneys, and brains of dTg mice, whereas lung, liver, and testis tissues expressed low levels. The level of hACE2 was significantly enhanced in hearts and kidneys of the Dox+dTg group compared to that in Vehicle+dTg mice although consistent levels of mouse ACE2 (mACE2) remained in the same tissues. Based on the microarray analysis of heart tissue, 385 genes were differentially expressed, including 168 upregulated and 217 downregulated, when comparing non-Tg and Vehicle+dTg mice, whereas 216 genes were differentially expressed, including 136 upregulated and 80 downregulated, between Vehicle+dTg and Dox+dTg mice. In the kidneys, 402 genes were differentially expressed, including 159 upregulated and 243 downregulated, between non-Tg and Vehicle+dTg mice. Dox-treated dTg mice exhibited the differential expression of 4735 genes including 1636 upregulated and 3109 downregulated. Taken together, these findings suggested that several functional groups and individual genes can be considered biomarkers that respond to hACE2 overexpression in dTg mice. Moreover, our results provided a lot of useful information to predict physiological responses when these dTg mice are applied as a susceptible model for novel coronavirus (SARS-CoV, COVID-19) in both vaccine and drug development.

3.
Laboratory Animal Research ; : 141-145, 2012.
Artigo em Inglês | WPRIM | ID: wpr-98975

RESUMO

The drug resistance of microorganisms isolated from laboratory animals never treated with antibiotics is being reported consistently, while the number of laboratory animals used in medicine, pharmacy, veterinary medicine, agriculture, nutrition, and environmental and health science has increased rapidly in Korea. Therefore, this study examined the development of antimicrobial resistance in bacteria isolated from laboratory animals bred in Korea. A total of 443 isolates (7 species) containing 5 Sphingomonas paucimobilis, 206 Escherichia coli, 60 Staphylococcus aureus, 15 Staphylococcus epidermidis, 77 Enterococcus faecalis, 27 Citrobacter freundii, 35 Acinetobacter baumannii were collected from the nose, intestine, bronchus and reproductive organs of ICR mice and SD rats. Of these species, Acinetobacter baumannii and Enterococcus faecalis showed significant antimicrobial resistance according to the minimum inhibition concentration (MIC) in E-test. In case of Acinetobacter baumannii, several isolates showed MIC values 16-128 microg/mL for cefazolin and cefoxitin, and higher resistance (128-512 microg/mL) to nitrofurantoin than that of standard type. Resistance to cefazolin, cefoxitin and nitrofurantoin was detected in 17.14, 20.00, and 8.57% of the Acinetobacter baumannii isolates, respectively. In addition, 44.1% of the Enterococcus faecalis isolates collected from the laboratory animals were resistant to oxacillin concentration of 16-32 microg/mL range, while MIC value of standard type was below oxacillin concentration of 6 microg/mL. These results suggest that in rodent species of laboratory animals, Acinetobacter baumannii are resistance to cefazolin, cefoxitin and nitrofurantoin, whereas those of Enterococcus faecalis were resistance to oxacillin.


Assuntos
Animais , Camundongos , Ratos , Acinetobacter baumannii , Agricultura , Animais de Laboratório , Antibacterianos , Bactérias , Brônquios , Cefazolina , Cefoxitina , Citrobacter freundii , Resistência a Medicamentos , Resistência Microbiana a Medicamentos , Enterococcus faecalis , Escherichia coli , Intestinos , Coreia (Geográfico) , Camundongos Endogâmicos ICR , Nitrofurantoína , Nariz , Oxacilina , Farmácia , Roedores , Sphingomonas , Staphylococcus aureus , Staphylococcus epidermidis , Medicina Veterinária
4.
Laboratory Animal Research ; : 29-36, 2011.
Artigo em Inglês | WPRIM | ID: wpr-227297

RESUMO

Exercise training is highly correlated with the reduced glucose-stimulated insulin secretion (GSIS), although it enhanced insulin sensitivity, glucose uptake and glucose transporter expression to reduce severity of diabetic symptoms. This study investigated the impact of short-term swimming exercise on insulin regulation in the Goto-Kakizaki (GK) rat as a non-obese model of non-insulin-dependent diabetes mellitus. Wistar (W/S) and GK rats were trained 2 hours daily with the swimming exercise for 4 weeks, and then the changes in the metabolism of insulin and glucose were assessed. Body weight was markedly decreased in the exercised GK rats compare to their non-exercised counterpart, while W/S rats did not show any exercise-related changes. Glucose concentration was not changed by exercise, although impaired glucose tolerance was improved in GK rats 120 min after glucose injection. However, insulin concentration was decreased by swimming exercise as in the decrease of GSIS after running exercise. To identify the other cause for exercise-induced insulin down-regulation, the changes in the levels of key factors involved in insulin production (C-peptide) and clearance (insulin-degrading enzyme; IDE) were measured in W/S and GK rats. The C-peptide level was maintained while IDE expression increased markedly. Therefore, these results showed that insulin down-regulation induced by short-term swimming exercise likely attributes to enhanced insulin clearance via IDE over-expression than by altered insulin production.


Assuntos
Animais , Ratos , Peso Corporal , Peptídeo C , Diabetes Mellitus Tipo 2 , Regulação para Baixo , Glucose , Proteínas Facilitadoras de Transporte de Glucose , Insulina , Resistência à Insulina , Insulisina , Corrida , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA