Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Tropical Biomedicine ; : 140-150, 2015.
Artigo em Inglês | WPRIM | ID: wpr-630416

RESUMO

There has been a worldwide surge in the number and severity of dengue in the past decades. In Singapore, relentless vector control efforts have been put in to control the disease since the 1960’s. Space spraying, fogging, chemical treatment and source reduction are some commonly used methodologies for controlling its vectors, particularly Aedes aegypti. Here, as we explored the use of a commercially available delthamethrin-treated net as an alternative strategy and the efficacy of the treated net was found to be limited. Through bioassays and molecular studies, the failure of the treated net to render high mortality rate was found to be associated with the knockdown resistance (kdr) mutation. This is the first report of kdr- mutations in Singapore’s Ae. aegypti. At least one point mutation, either homozygous or heterozygous, at amino acid residue V1016G of DIIS6 or F1269C of DIIIS6 was detected in 93% of field strains of Ae. aegypti. Various permutations of wild type and mutant amino acids of the four alleles were found to result in varying degree of survival rate among local field Ae. aegypti when exposed to the deltamethrin treated net. Together with the association of higher survival rate with the presence of both V1016G and F1269C, the data suggest the role of these mutations in the resistance to the deltamethrin. The high prevalence of these mutations were confirmed in a country wide survey where 70% and 72% of the 201 Ae. aegypti analysed possessed the mutations at residues 1016 and 1269 respectively. The highest mutated frequency combination was found to be heterozygous alleles (VG/FC) at both residues 1016 and 1269 (37.8%), followed by homozygous mutation at allele 1269 (24.4%) and homozygous mutation at allele 1016 (22.9%). The kdr- type of resistance among the vector is likely to undermine the effectiveness of pyrethroids treated materials against these mosquitoes.

2.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;17(4): 473-485, 2011. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: lil-623511

RESUMO

Hypnale hypnale (hump-nosed pit viper) has been recently identified as one of the medically important venomous snakes in Sri Lanka and on the southwestern coast of India. The characterization of its venom is essential for understanding the pathophysiology of envenomation and for optimizing its management. In the present study, the biological properties of Hypnale hypnale venom and venom fractions obtained using Resource Q ion exchange chromatography were determined. The venom exhibited toxic activities typical of pit viper venom, comparable to that of its sister taxon, the Malayan pit viper (Calloselasma rhodostoma). Particularly noteworthy were its high activities of thrombin-like enzyme, proteases, phospholipase A2, L-amino acid oxidase and hyaluronidase. The thrombin-like enzyme was mainly acidic and distributed over several chromatography fractions, indicating its existence in multiple isoforms. The hemorrhagic and necrotic activities of the venom were likely associated with the proteolytic enzyme found mainly in the basic fraction. Phospholipase A2 and phosphomonoesterase exist in both acidic and basic isoforms, while L-amino acid oxidase and hyaluronidase are highly acidic. The venom clotting activity on fibrinogens showed distinct species specificity in the following increasing order for clotting time: bovine < rabbit < goat < human < horse < < dog, and was comparable to that of C. rhodostoma venom. Its clot formation on human fibrinogen is gradual and prolonged, a phenomenon suggestive of consumptive coagulopathy as a complication observed clinically. At an intramuscular sublethal dose, the venom did not cause acute kidney injury in a rodent model, contrary to the positive control group treated with Daboia russelii venom. Nephrotoxicity may result from higher venom doses in the context of coagulopathy, as a complication provoked by venom hematoxicity.(AU)


Assuntos
Animais , Produtos Biológicos , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Venenos de Crotalídeos , Troca Iônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA