Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. microbiol ; 43(2): 810-818, Apr.-June 2012. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-644500

RESUMO

Chlorhexidine (Cx) augmented with beta-cyclodextrin (β-cd) inclusion compounds, termed Cx:β-cd complexes, have been developed for use as antiseptic agents. The aim of this study was to examine the interactions of Cx:β-cd complexes, prepared at different molecular ratios, with sterol and yeast membranes. The Minimal Inhibitory Concentration (MIC) against the yeast Candida albicans (C.a.) was determined for each complex; the MICs were found to range from 0.5 to 2 µg/mL. To confirm the MIC data, quantitative analysis of viable cells was performed using trypan blue staining. Mechanistic characterization of the interactions that the Cx:β-cd complexes have with the yeast membrane and assessment of membrane morphology following exposure to Cx:β-cd complexes were performed using Sterol Quantification Method analysis (SQM) and scanning electron microscopy (SEM). SQM revealed that sterol extraction increased with increasing β-cd concentrations (1.71 × 10³; 1.4 × 10³; 3.45 × 10³, and 3.74 × 10³ CFU for 1:1, 1:2, 1:3, and 1:4, respectively), likely as a consequence of membrane ergosterol solubilization. SEM images demonstrated that cell membrane damage is a visible and significant mechanism that contributes to the antimicrobial effects of Cx:β-cd complexes. Cell disorganization increased significantly as the proportion of β-cyclodextrin present in the complex increased. Morphology of cells exposed to complexes with 1:3 and 1:4 molar ratios of Cx:β-cd were observed to have large aggregates mixed with yeast remains, representing more membrane disruption than that observed in cells treated with Cx alone. In conclusion, nanoaggregates of Cx:β-cd complexes block yeast growth via ergosterol extraction, permeabilizing the membrane by creating cluster-like structures within the cell membrane, possibly due to high amounts of hydrogen bonding.


Assuntos
Anti-Infecciosos Locais/análise , Candida albicans/crescimento & desenvolvimento , Clorexidina/análise , Ergosterol/análise , Corpos de Inclusão , Leveduras/crescimento & desenvolvimento , beta-Ciclodextrinas/análise , Métodos , Microscopia Eletrônica de Varredura
2.
Rev. ciênc. farm. básica apl ; 29(3): 257-260, 2008. tab
Artigo em Inglês | LILACS | ID: lil-530190

RESUMO

An ethanolic extract of leaves from the tree Casearia sylvestris, known as guaçatonga in Brazil, was tested for in vitro activity against oral pathogenic bacteria and fungi. The results showed susceptibility of all the microorganisms tested. This study suggests a potential use of ethanolic extract of C. sylvestris as a novel treatment of oral infectious conditions, such as denture stomatitis, periodontitis and dental caries.


Assuntos
Antibacterianos , Casearia , Extratos Vegetais/uso terapêutico , Boca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA