Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
International Journal of Oral Science ; (4): 8-8, 2019.
Artigo em Inglês | WPRIM | ID: wpr-772279

RESUMO

Tooth enamel is a complex mineralized tissue consisting of long and parallel apatite crystals configured into decussating enamel rods. In recent years, multiple approaches have been introduced to generate or regenerate this highly attractive biomaterial characterized by great mechanical strength paired with relative resilience and tissue compatibility. In the present review, we discuss five pathways toward enamel tissue engineering, (i) enamel synthesis using physico-chemical means, (ii) protein matrix-guided enamel crystal growth, (iii) enamel surface remineralization, (iv) cell-based enamel engineering, and (v) biological enamel regeneration based on de novo induction of tooth morphogenesis. So far, physical synthesis approaches using extreme environmental conditions such as pH, heat and pressure have resulted in the formation of enamel-like crystal assemblies. Biochemical methods relying on enamel proteins as templating matrices have aided the growth of elongated calcium phosphate crystals. To illustrate the validity of this biochemical approach we have successfully grown enamel-like apatite crystals organized into decussating enamel rods using an organic enamel protein matrix. Other studies reviewed here have employed amelogenin-derived peptides or self-assembling dendrimers to re-mineralize mineral-depleted white lesions on tooth surfaces. So far, cell-based enamel tissue engineering has been hampered by the limitations of presently existing ameloblast cell lines. Going forward, these limitations may be overcome by new cell culture technologies. Finally, whole-tooth regeneration through reactivation of the signaling pathways triggered during natural enamel development represents a biological avenue toward faithful enamel regeneration. In the present review we have summarized the state of the art in enamel tissue engineering and provided novel insights into future opportunities to regenerate this arguably most fascinating of all dental tissues.


Assuntos
Condicionamento Ácido do Dente , Amelogenina , Biomimética , Esmalte Dentário , Metabolismo , Proteínas do Esmalte Dentário , Odontologia , Engenharia Tecidual , Métodos , Remineralização Dentária
2.
International Journal of Oral Science ; (4): 24-24, 2018.
Artigo em Inglês | WPRIM | ID: wpr-772291

RESUMO

MicroRNAs (miRNAs) are critical regulators of the host immune and inflammatory response against bacterial pathogens. In the present review, we discuss target genes, target gene functions, the potential regulatory role of miRNAs in periodontal tissues, and the potential role of miRNAs as biomarkers and therapeutics. In periodontal disease, miRNAs exert control over all aspects of innate and adaptive immunity, including the functions of neutrophils, macrophages, dendritic cells and T and B cells. Previous human studies have highlighted some key miRNAs that are dysregulated in periodontitis patients. In the present study, we mapped the major miRNAs that were altered in our reproducible periodontitis mouse model relative to control animals. The miRNAs that were upregulated as a result of periodontal disease in both human and mouse studies included miR-15a, miR-29b, miR-125a, miR-146a, miR-148/148a and miR-223, whereas miR-92 was downregulated. The association of individual miRNAs with unique aspects of periodontal disease and their stability in gingival crevicular fluid underscores their potential as markers for periodontal disease progression or healthy restitution. Moreover, miRNA therapeutics hold great promise for the future of periodontal therapy because of their ability to modulate the immune response to infection when applied in conjunction with synthetic antagomirs and/or relatively straightforward delivery strategies.


Assuntos
Animais , Humanos , Imunidade Adaptativa , Biomarcadores , Progressão da Doença , Imunidade Inata , MicroRNAs , Genética , Alergia e Imunologia , Doenças Periodontais , Genética , Alergia e Imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA