Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Experimental Neurobiology ; : 343-353, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1000348

RESUMO

Neuropathic pain presents a formidable clinical challenge due to its persistent nature and limited responsiveness to conventional analgesic treatments. While significant progress has been made in understanding the role of spinal astrocytes in neuropathic pain, their contribution and functional changes following a partial crush injury (PCI) remain unexplored. In this study, we investigated structural and functional changes in spinal astrocytes during chronic neuropathic pain, employing a partial crush injury model. This model allowes us to replicate the transition from initial nociceptive responses to persistent pain, highlighting the relevance of astrocytes in pain maintenance and sensitization. Through the examination of mechanical allodynia, a painful sensation in response to innocuous stimuli, and the correlation with increased levels of brain-derived neurotrophic factor (BDNF) along with reactive astrocytes, we identified a potential mechanistic link between astrocytic activity and BDNF signaling.Ultimately, our research provides evidence that inhibiting astrocyte activation through a BDNF/TrkB inhibitor alleviates mechanical allodynia, underscoring the therapeutic potential of targeting glial BDNF-related pathways for pain management. These findings offer critical insights into the cellular and molecular dynamics of neuropathic pain, paving the way for innovative and targeted treatment strategies for this challenging condition.

2.
Artigo em Inglês | WPRIM | ID: wpr-966416

RESUMO

Furanocoumarin 8-methoxypsoralen (8-MOP) is the parent compound that naturally occurs in traditional medicinal plants used historically. 8-MOP has been employed as a photochemotherapeutic component of Psoralen + Ultraviolet A (PUVA) therapy for the treatment of vitiligo and psoriasis. Although the role of 8-MOP in PUVA therapy has been studied, little is known about the effects of 8-MOP alone on human gastric cancer cells. In this study, we observed anti-proliferative effect of 8-MOP in several human cancer cell lines. Among these, the human gastric cancer cell line SNU1 is the most sensitive to 8-MOP. 8-MOP treated SNU1 cells showed G1-arrest by upregulating p53 and apoptosis by activating caspase-3 in a dose-dependent manner, which was confirmed by loss-of-function analysis through the knockdown of p53-siRNA and inhibition of apoptosis by Z-VAD-FMK. Moreover, 8-MOPinduced apoptosis is not associated with autophagy or necrosis. The signaling pathway responsible for the effect of 8-MOP on SNU1 cells was confirmed to be related to phosphorylated PI3K, ERK2, and STAT3. In contrast, 8-MOP treatment decreased the expression of the typical metastasis-related proteins MMP-2, MMP-9, and Snail in a p53-independent manner. In accordance with the serendipitous findings, treatment with 8-MOP decreased the wound healing, migration, and invasion ability of cells in a dose-dependent manner. In addition, combination treatment with 8-MOP and gemcitabine was effective at the lowest concentrations. Overall, our findings indicate that oral 8-MOP has the potential to treat early human gastric cancer, with fewer side effects.

3.
Artigo em 0 | WPRIM | ID: wpr-830924

RESUMO

Econazole, a potent broad-spectrum antifungal agent and a Ca2+ channel antagonist, induces cytotoxicity in leukemia cells and is used for the treatment of skin infections. However, little is known about its cytotoxic effects on solid tumor cells. Here, we investigated the molecular mechanism underlying econazole-induced toxicity in vitro and evaluated its regulatory effect on the metastasis of gastric cancer cells. Using the gastric cancer cell lines AGS and SNU1 expressing wild-type p53 we demonstrated that econazole could significantly reduce cell viability and colony-forming (tumorigenesis) ability. Econazole induced G0/G1 phase arrest, promoted apoptosis, and effectively blocked proliferation- and survival-related signal transduction pathways in gastric cancer cells. In addition, econazole inhibited the secretion of matrix metalloproteinase- 2 (MMP-2) and MMP-9, which degrade the extracellular matrix and basement membrane. Econazole also effectively inhibited the metastasis of gastric cancer cells, as confirmed from cell invasion and wound healing assays. The protein level of p53 was significantly elevated after econazole treatment of AGS and SNU1 cells. However, apoptosis was blocked in econazole-treated cells exposed to a p53-specific small-interfering RNA to eliminate p53 expression. These results provide evidence that econazole could be repurposed to induce gastric cancer cell death and inhibit cancer invasion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA