Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
J Biosci ; 2013 Nov; 38(4): 777-787
Artigo em Inglês | IMSEAR | ID: sea-161865

RESUMO

Plant haemoglobins (Hbs), found in both symbiotic and non-symbiotic plants, are heme proteins and members of the globin superfamily. Hb genes of actinorhizal Fagales mostly belong to the non-symbiotic type of haemoglobin; however, along with the non-symbiotic Hb, Casuarina sp. posses a symbiotic one (symCgHb), which is expressed specifically in infected cells of nodules. A thorough sequence analysis of 26 plant Hb proteins, currently available in public domain, revealed a consensus motif of 29 amino acids. This motif is present in all the members of symbiotic class II Hbs including symCgHb and non-symbiotic Class II Hbs, but is totally absent in Class I symbiotic and non-symbiotic Hbs. Further, we constructed 3D structures of Hb proteins from Alnus and Casuarina through homology modelling and peeped into their structural properties. Structure-based studies revealed that the Casuarina symbiotic haemoglobin protein shows distinct stereochemical properties from that of the other Casuarina and Alnus Hb proteins. It also showed considerable structural similarities with leghemoglobin structure from yellow lupin (pdb id 1GDI). Therefore, sequence and structure analyses point to the fact that symCgHb protein shows significant resemblance to symbiotic haemoglobin found in legumes and may thus eventually play a similar role in shielding the nitrogenase from oxygen as seen in the case of leghemoglobin.

2.
J Biosci ; 2013 Nov; 38(4): 727-732
Artigo em Inglês | IMSEAR | ID: sea-161860

RESUMO

Pseudogenes are defined as non-functional relatives of genes whose protein-coding abilities are lost and are no longer expressed within cells. They are an outcome of accumulation of mutations within a gene whose end product is not essential for survival. Proper investigation of the procedure of pseudogenization is relevant for estimating occurrence of duplications in genomes. Frankineae houses an interesting group of microorganisms, carving a niche in the microbial world. This study was undertaken with the objective of determining the abundance of pseudogenes, understanding strength of purifying selection, investigating evidence of pseudogene expression, and analysing their molecular nature, their origin, evolution and deterioration patterns amongst domain families. Investigation revealed the occurrence of 956 core pFAM families sharing common characteristics indicating co-evolution. WD40, Rve_3, DDE_Tnp_IS240 and phage integrase core domains are larger families, having more pseudogenes, signifying a probability of harmful foreign genes being disabled within transposable elements. High selective pressure depicted that gene families rapidly duplicating and evolving undoubtedly facilitated creation of a number of pseudogenes in Frankineae. Codon usage analysis between protein-coding genes and pseudogenes indicated a wide degree of variation with respect to different factors. Moreover, the majority of pseudogenes were under the effect of purifying selection. Frankineae pseudogenes were under stronger selective constraints, indicating that they were functional for a very long time and became pseudogenes abruptly. The origin and deterioration of pseudogenes has been attributed to selection and mutational pressure acting upon sequences for adapting to stressed soil environments.

3.
Artigo em Inglês | IMSEAR | ID: sea-161859

RESUMO

Among the Actinobacteria, the genus Frankia is well known for its facultative lifestyle as a plant symbiont of dicotyledonous plants and as a free-living soil dweller. Frankia sp. strains are generally classified into one of four major phylogenetic groups that have distinctive plant host ranges. Our understanding of these bacteria has been greatly facilitated by the availability of the first three complete genome sequences, which suggested a correlation between genome size and plant host range. Since that first report, eight more Frankia genomes have been sequenced. Representatives from all four lineages have been sequenced to provide vital baseline information for genomic approaches toward understanding these novel bacteria. An overview of the Frankia genomes will be presented to stimulate discussion on the potential of these organisms and a greater understanding of their physiology and evolution.

4.
J Biosci ; 2013 Nov; 38(4): 699-702
Artigo em Inglês | IMSEAR | ID: sea-161856

RESUMO

Actinorhizal plants are able to overcome saline soils and reclaim land. Frankia sp strain CcI6 was isolated from nodules of Casuarina cunninghamiana found in Egypt. Phylogenetic analysis of Frankia sp. strain CcI6 revealed that the strain is closely related to Frankia sp. strain CcI3. The strain displays an elevated level of NaCl tolerance. Vesicle production and nitrogenase activity were also influenced by NaCl.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA