Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Chinese Physician ; (12): 1214-1218,1224, 2023.
Artigo em Chinês | WPRIM | ID: wpr-992446

RESUMO

Objective:To observe the clinical efficacy of autologous platelet rich gel (APG) in the treatment of type 2 diabetic foot (DF) patients and the effect of APG on the expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in peripheral blood mononuclear cells (PBMCs).Methods:A total of 62 patients with DF admitted to the Affiliated Hospital of Kangda College of Nanjing Medical University from February 2021 to May 2022 were randomly divided into a control group (30 cases) and an observation group (32 cases) using a random number table method. The control group received ultrasound debridement and dressing change treatment, while the observation group received ultrasound debridement combined with APG treatment. After 6 weeks of treatment, the effective rate, transcutaneous oxygen partial pressure (TcPO 2), and serum tumor necrosis factor- α (TNF-α), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), hypoxia inducible factor α (HIF-1 α)and the level of MALAT1 expression in PBMCs of the two groups of patients were observed. The Pearson correlation analysis was used to investigate the relationship between the expression change of MALAT (△ MALAT1) and the total effective rate of treatment. Results:The total effective rate of the observation group was higher than that of the control group [93.75%(30/32) vs 73.33%(22/30), P<0.05]. After treatment, the systolic blood pressure (SBP), diastolic blood pressure (DBP), cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), fasting blood glucose (FPG), glycosylated hemoglobin (HbA 1c), urinary microalbumin/creatinine (UACR), uric acid (UA), white blood cells (WBC), TNF- α and IL-6 of both groups had decreased compared to before; HIF-1 α, VEGF and MALAT1 increased compared to before treatment (all P<0.05); After treatment, there was a statistically significant difference in UA, HIF-1α, VEGF, and MALAT1 between the observation group and the control group (all P<0.05). Pearson correlation analysis showed that Δ MALAT1 in DF patients was negatively correlated with TNF -α ( r=-0.61, P=0.02), IL-6 ( r=-0.52, P=0.04), WBC ( r=-0.53, P=0.03), and positively correlated with VEGF ( r=0.58, P=0.03) and HIF-1α ( r=0.54, P=0.03). The total effective rate of DF treatment was higher in the high change group of△ MALAT [88.37%(38/43) vs 73.68%(14/19), P<0.05]. There was no statistically significant difference in the incidence of adverse reactions between the two groups ( P>0.05). Conclusions:APG can significantly upregulate the expression of MALAT, improve wound tissue blood perfusion, wound angiogenesis, and inflammatory response, promote ulcer healing, and changes in MALAT expression can help determine the prognosis of DF.

2.
Acta Pharmaceutica Sinica B ; (6): 1246-1261, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971764

RESUMO

As a neurological disorder in the brain, epilepsy is not only associated with abnormal synchronized discharging of neurons, but also inseparable from non-neuronal elements in the altered microenvironment. Anti-epileptic drugs (AEDs) merely focusing on neuronal circuits frequently turn out deficient, which is necessitating comprehensive strategies of medications to cover over-exciting neurons, activated glial cells, oxidative stress and chronic inflammation synchronously. Therefore, we would report the design of a polymeric micelle drug delivery system that was functioned with brain targeting and cerebral microenvironment modulation. In brief, reactive oxygen species (ROS)-sensitive phenylboronic ester was conjugated with poly-ethylene glycol (PEG) to form amphiphilic copolymers. Additionally, dehydroascorbic acid (DHAA), an analogue of glucose, was applied to target glucose transporter 1 (GLUT1) and facilitate micelle penetration across the blood‒brain barrier (BBB). A classic hydrophobic AED, lamotrigine (LTG), was encapsulated in the micelles via self-assembly. When administrated and transferred across the BBB, ROS-scavenging polymers were expected to integrate anti-oxidation, anti-inflammation and neuro-electric modulation into one strategy. Moreover, micelles would alter LTG distribution in vivo with improved efficacy. Overall, the combined anti-epileptic therapy might provide effective opinions on how to maximize neuroprotection during early epileptogenesis.

3.
Chinese Journal of Blood Transfusion ; (12): 783-785, 2022.
Artigo em Chinês | WPRIM | ID: wpr-1004163

RESUMO

In order to solve the difficulties and challenges in the implementation of the original blood distribution and collection regulations caused by the expansion of hospital area, the extension of blood transfer time, the changeability of blood transfer environment, and the strain of personnel due to the increase of workload, as well as to ensure the accuracy of the information throughout blood remote verification and distribution and the safety of clinical blood transfusion, , Shanghai experts related to clinical transfusion and blood management had made a systematic study on the applicable scope and management rules of remote verification of blood distribution and collection, and formulated this Expert Consensus combined with the development status of digital, intelligent and remote communication technologies, so as to provide corresponding guidance for clinical medical institutions in line with the changes in reality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA