Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Environmental Health and Preventive Medicine ; : 202-208, 2007.
Artigo em Inglês | WPRIM | ID: wpr-359841

RESUMO

<p><b>OBJECTIVES</b>In addition to having health-promoting effects, exercise is considered to induce oxidative stress. To clarify whether increased oxygen consumption during exercise induces oxidative stress, we investigated the effects of aerobic exercise and anaerobic exercise on a series of oxidative damage markers.</p><p><b>METHODS</b>One group of subjects performed aerobic exercise and another group performed anaerobic exercise with similar workloads, but with different levels of oxygen consumption. Blood and urine samples were collected before, immediately after, and 3, 9, and 24 h after exercise. Serum uric acid (UA) and creatine phosphokinase were evaluated. As markers of oxidative damage to lipids, proteins and DNA, we evaluated serum 4-hydroxy-2-nonenal, urinary F(2)-isoprostanes, serum protein carbonyls, and leukocyte 8-hydroxydeoxyguanosine.</p><p><b>RESULTS</b>Oxygen consumption was significantly greater during aerobic exercise. Although UA level increased immediately after aerobic exercise and decreased thereafter, UA level did not change after anaerobic exercise. The two types of exercise had significantly different effects on the change in UA level. After anaerobic exercise, the levels of 8-hydroxydeoxyguanosine and 4-hydroxy-2-nonenal significantly increased at 24 h and 3 h, respectively. The levels of creatine phosphokinase and F(2)-isoprostanes decreased after exercise. The two types of exercise caused no apparent significant differences in the levels of these biomarkers.</p><p><b>CONCLUSION</b>The findings suggest that similar workloads of anaerobic exercise and aerobic exercise induce reactive oxygen species (ROS) differently: aerobic exercise seems to initially generate more ROS, whereas anaerobic exercise may induce prolonged ROS generation. Although more oxygen was consumed during aerobic exercise, the generated ROS did not induce significant oxidative damage. Oxygen consumption per se may not be the major cause of exercise-induced oxidative damage.</p>

2.
Environmental Health and Preventive Medicine ; : 202-208, 2007.
Artigo em Japonês | WPRIM | ID: wpr-361340

RESUMO

Objectives: In addition to having health-promoting effects, exercise is considered to induce oxidative stress. To clarify whether increased oxygen consumption during exercise induces oxidative stress, we investigated the effects of aerobic exercise and anaerobic exercise on a series of oxidative damage markers. Methods: One group of subjects performed aerobic exercise and another group performed anaerobic exercise with similar workloads, but with different levels of oxygen consumption. Blood and urine samples were collected before, immediately after, and 3, 9, and 24 h after exercise. Serum uric acid (UA) and creatine phosphokinase were evaluated. As markers of oxidative damage to lipids, proteins and DNA, we evaluated serum 4-hydroxy-2-nonenal, urinary F2-isoprostanes, serum protein carbonyls, and leukocyte 8-hydroxydeoxyguanosine. Results: Oxygen consumption was significantly greater during aerobic exercise. Although UA level increased immediately after aerobic exercise and decreased thereafter, UA level did not change after anaerobic exercise. The two types of exercise had significantly different effects on the change in UA level. After anaerobic exercise, the levels of 8-hydroxydeoxyguanosine and 4-hydroxy-2-nonenal significantly increased at 24 h and 3 h, respectively. The levels of creatine phosphokinase and F2-isoprostanes decreased after exercise. The two types of exercise caused no apparent significant differences in the levels of these biomarkers. Conclusion: The findings suggest that similar workloads of anaerobic exercise and aerobic exercise induce reactive oxygen species (ROS) differently: aerobic exercise seems to initially generate more ROS, whereas anaerobic exercise may induce prolonged ROS generation. Although more oxygen was consumed during aerobic exercise, the generated ROS did not induce significant oxidative damage. Oxygen consumption per se may not be the major cause of exercise-induced oxidative damage.


Assuntos
Exercício Físico , Exercício Físico , Estresse Oxidativo , Consumo de Oxigênio
3.
Environmental Health and Preventive Medicine ; : 9-12, 2004.
Artigo em Inglês | WPRIM | ID: wpr-332074

RESUMO

In Japan, Max von Pettenkofer is highly regarded as a pioneer of modern hygiene. The contribution of Edmund Alexander Parkes, however, is not yet sufficiently appreciated. This paper outlines the life and achievements of E.A. Parkes and discusses his influence in Japan.

4.
Environmental Health and Preventive Medicine ; : 9-12, 2004.
Artigo em Japonês | WPRIM | ID: wpr-361436

RESUMO

In Japan, Max von Pettenkofer is highly regarded as a pioneer of modern hygiene. The contribution of Edmund Alexander Parkes, however, is not yet sufficiently appreciated. This paper outlines the life and achievements of E.A. Parkes and discusses his influence in Japan.


Assuntos
Japão , Mésons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA