Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. arch. biol. technol ; 64: e21200193, 2021. tab
Artigo em Inglês | LILACS | ID: biblio-1249203

RESUMO

Abstract wastewater treatment (WT) is of major importance on modern cities, removing wastewater pollutants resultant from anthropogenic activities. The unique abilities of microbes to degrade organic matter, remove nutrients and transform toxic compounds into harmless products make them essential players in waste treatment. The microbial diversity determines the metabolic pathways that may occur in WT and quality of treated wastewater. Therefore, understanding WT microbial community structure, distribution, and metabolic functioning is essential for development and optimization of efficient microbial engineering systems. Since cultivation methods can only detect a small fraction of the microbial diversity, the use of culture-independent molecular methods has circumvented this issue, allowing unprecedented access to genes and genomes used for microbial composition and function evaluation. Traditional approaches like RAPD, DGGE, ARDRA, RISA, SSCP, T-RFLP, and FISH and modern approaches like microarray, qPCR, and metagenomics are essential techniques for identifying and depicting the total microbial community structure and their interaction with environmental and biotic factors. Thus, this review describes traditional and state of the art molecular techniques which provide insights into phylogenetic and functional activities of microbial assemblages in a WT system.


Assuntos
Filogenia , Microbiologia da Água , Microbiota , Dermatoglifia , Sequenciamento de Nucleotídeos em Larga Escala
2.
Braz. arch. biol. technol ; 63(spe): e20190492, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1142514

RESUMO

Abstract Soil management influences organic matter decomposition rates as well soil microbial community functional behavior. No-till (NT) is the most used management system by farmers due to its conservation practices and high productivity. The main objective of this study was to evaluate the impact of surface-applied lime, nitrogen (N) application, and black oat residues on soil microbial community of a Typic Hapludox under continuous NT. Therefore, soil chemical attributes, microbial biomass carbon, basal respiration, metabolic quotient, most probable number of diazotrophs, as well as bacterial functional analysis were performed. The effect of liming and N fertilization amendments inputs were saw in soil respiration and metabolic quotient measurements, showing them to be good indicators of soil quality. Further studies should be carried out in order to molecularly identify microbial communities present in soils with different liming and N fertilization management to evaluate the behavior of specific bacterial taxa under such conditions.


Assuntos
Humanos , Solo/química , Microbiologia do Solo , Qualidade do Solo , Compostos de Cálcio/administração & dosagem , Fertilizantes , Nitrogênio/administração & dosagem , Análise do Solo , Microbiota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA